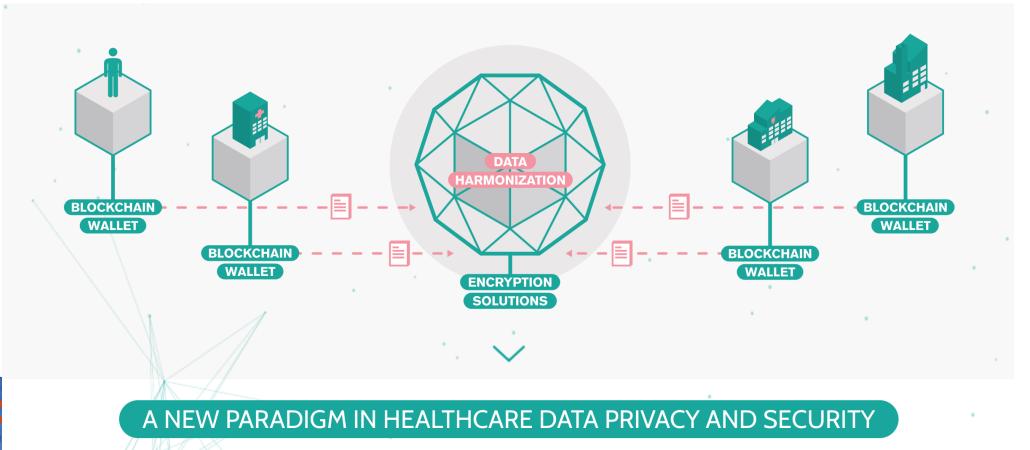
My Health, My Data (and other related projects)

Yannis Ioannidis ATHENA Research Center & University of Athens

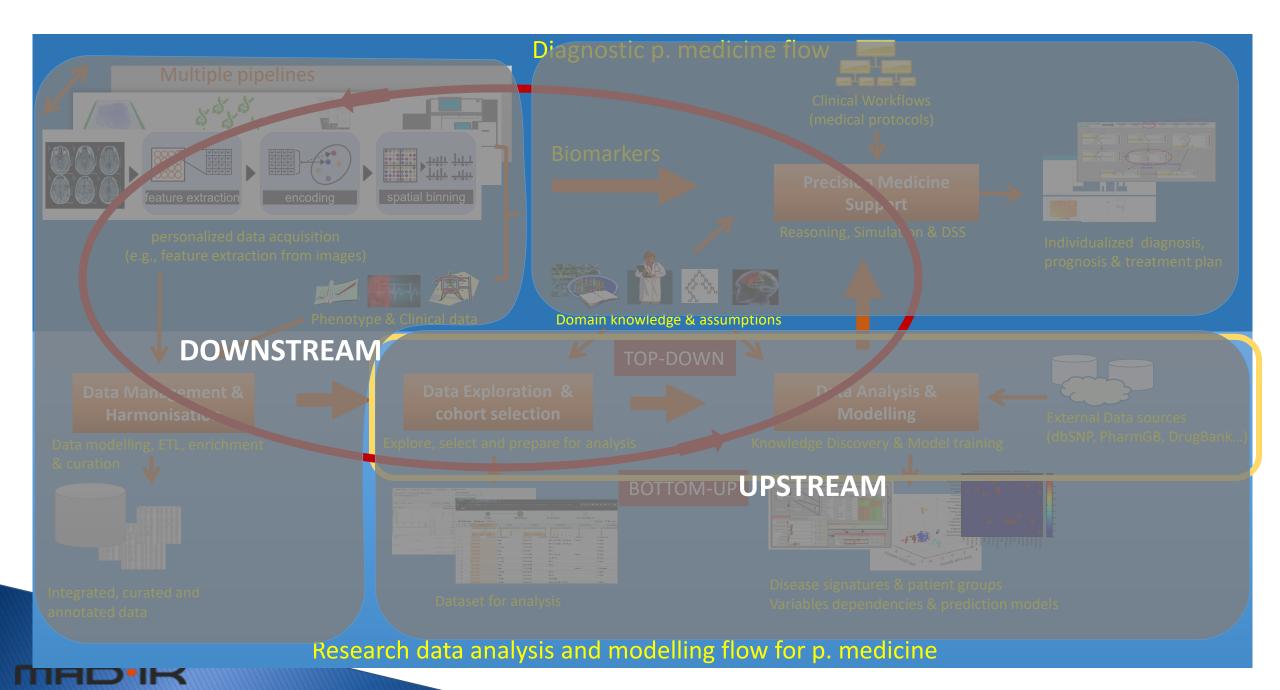
My Health, My Data!

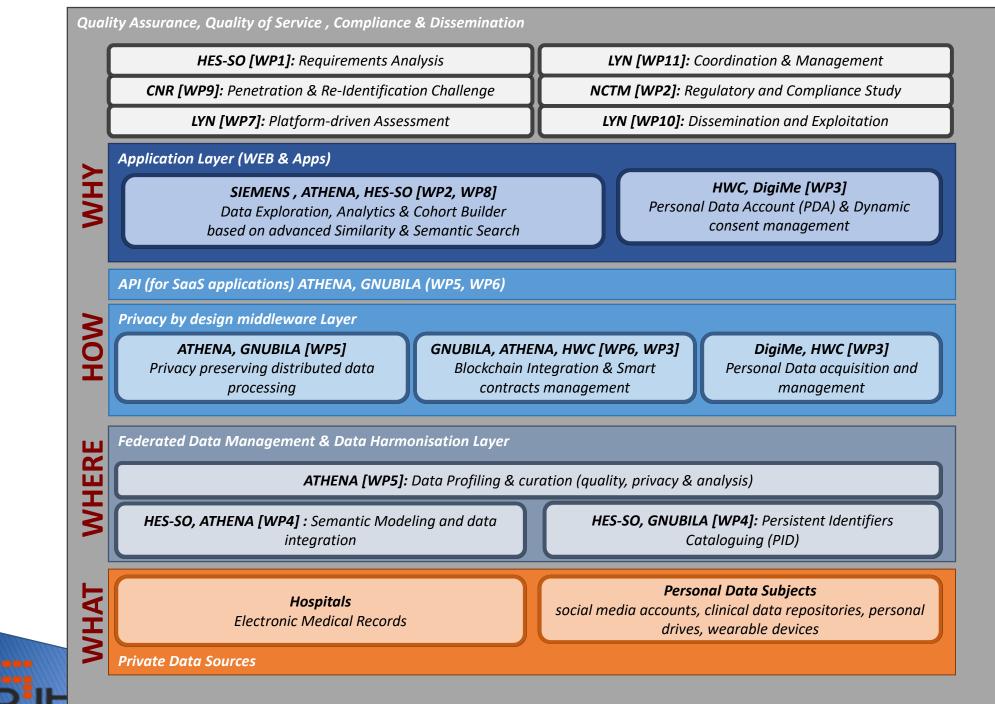
- 1 / 11 / 2016 30 / 10 / 2019
- ~3M€ (~420K€ for ARC)

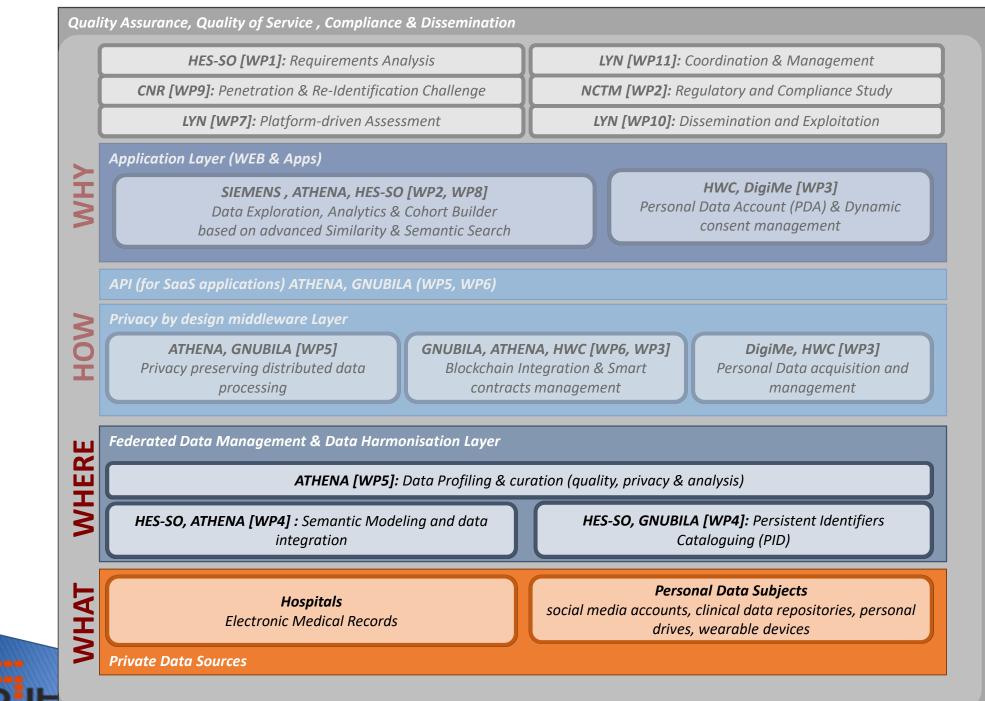


National Research Council of Italy

Institute of Electronics, Computer and Telecommunication Engineering







Data Collection and Management

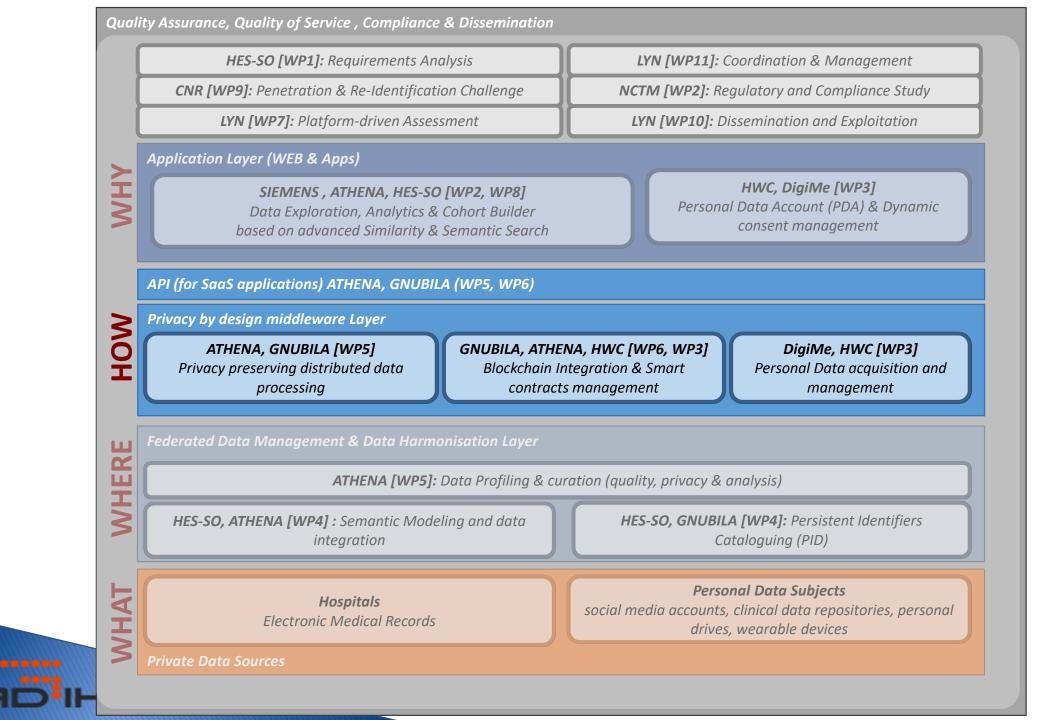
- Data collection / origin
 - Pseudonymised (de-identified) clinical (routine) data
 - Personal data including machine-generated data from Internet of Things (IoT)
 - Derived data related to the usage and the processing of the data
- Data storage & preservation
 - Federated data management for clinical data
 - ETL, pre-processing and pseudo-anonymization flow
 - DIGI.me Personal Data Account (PDA) application
 - retrieve personal data to an encrypted local library, which the users can then add to a personal cloud
- Data Modelling, Harmonisation, Cataloguing and Integration
 - Global dynamic Subjective-Objective-Assessment-Plan (SOAP) model
 - Use biomedical taxonomies and ontologies such as LOINC, SNOMED CT, ICD-10-CM, CPT, MESH
 - Persistent Identifiers (PIDs)
- Secure data access, sharing and processing in line with GDPR legislation

Hospitals

OPBG - Vatican UCL/GOSH – London DH – Berlin IGG – Genova KU - Leuven

CHUV – Lausanne

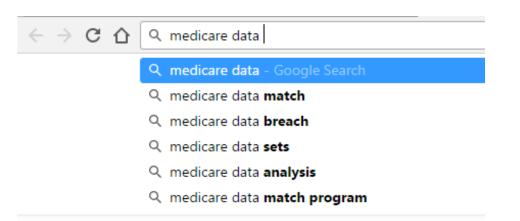
 $\bullet \bullet \bullet$



Data access & Privacy preservation

Security / privacy breaches:

- avoid a single point of failure (i.e., datawarehouse, TTP): decentralize data (transactions, patient data) and control using federation and blockchain
- offer multiple levels of privacy preservation
- Ownership: Users should control their data, easily join or leave
- Transparency: Users should audit the usage of their data
- Privacy is important



Blockchain integration @ MHMD

Data controllers
 Data controllers
 Data controllers
 Data controllers
 Data controllers
 Data controllers

Data subjects

- combine blockchain and off-blockchain storage
- users own, control and monitor their data and data usage
- utilize blockchain & smart contracts as an automated accesscontrol manager
- does not require trust in a third party

Data processors

(1) Initiates a Data

Output (WHAT)

Worker & Worker & W

(3c) Pres

Da

pointers to de-identified data → suitable for random queries
support full data processing through PPDM

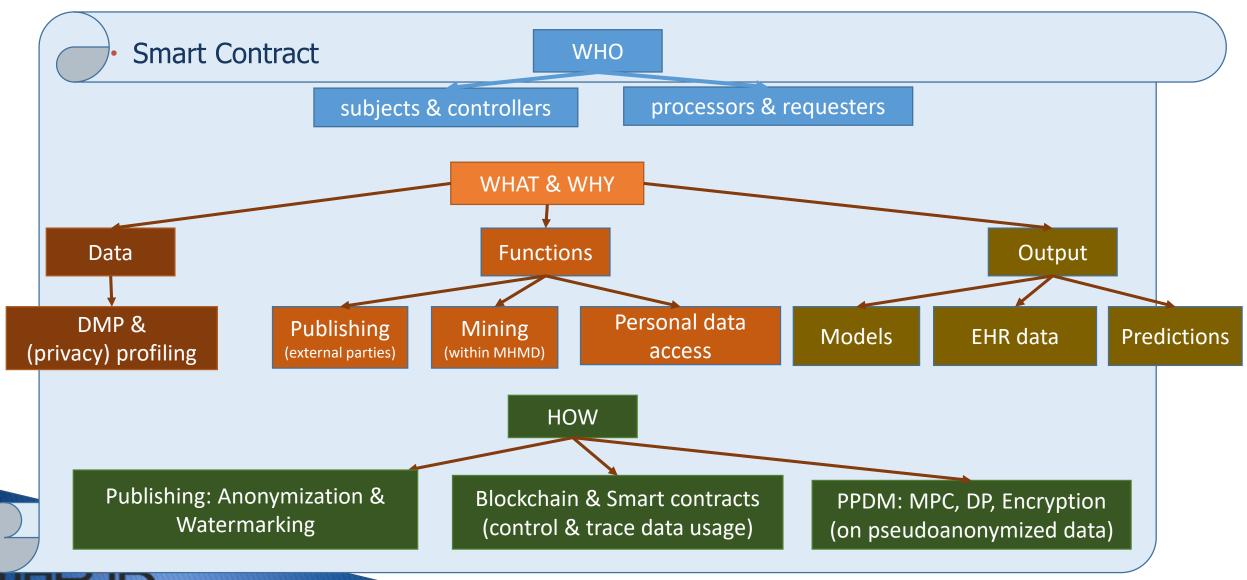
SeC

MDP

(2) consent request

rs

Blockchain integration



Encryption and privacy preserving policies

Three main use cases:

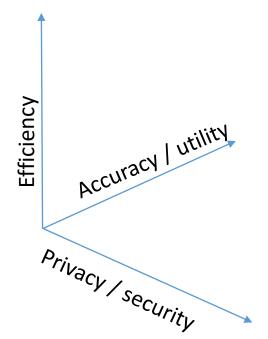
- Personal Data Access (no privacy)
 - Patient accessing his/her EHR
- Static Data publishing
 - Research VS other purposes
 - Anonymization requirements (AMNESIA)
 - Watermarking
- Privacy Preserving Data Mining (within platform)
 - Move data (authorized applications get and process the data i.e., MDP / Cardioproof)
 - Move computation to data: secure multiparty computation (SMC, DP) on federated data / distrustful parties (MHMD, HBP)
 - Other encryption techniques (homomorphic)

Encryption and privacy preserving policies

- static data publishing: "Sanitization" (Anonymization)
- secure multi party computation: Only overall aggregated data are transferred between nodes
- interactive anonymization: Differential Privacy & Crowd-Blending privacy
- encryption: Fully/Partially Homomorphic Encryption (FHE)
- decentralization: Use Blockchain to Protect Personal Data

Encryption and privacy preserving policies

- Privacy & Sensitivity Data Profiling:
 - Define privacy profiles per data type & usage scenario
- Trade-offs among efficiency, accuracy & privacy
- Define a formal methodology to describe "privacy budget" in terms of expected accuracy
- Automate privacy preserving method selection based on privacy & sensitivity profile and efficiency / accuracy trade-offs



Secure Data publishing

- "Sanitization" (Anonymisation) hiding individual information (ensuring k-anonymity) but preserving aggregated (sufficient) statistics
- Different dangers
 - Identity leakage
 - Attribute leakage
 - Participation leakage

Different transformations

- Generalization
- Suppression
- Perturbation
- Partitioning
- Noise addition

Secure Data publishing

Amnesia anonymization tool

- It offers several versions of k-anonymity
- It allows the user to select and customize possible solutions
- It offers graphical tools that allow the user to analyze the anonymized dataset
- $\circ\,$ It is scalable and uses all available CPU cores in the anonymization process

Watermarking techniques

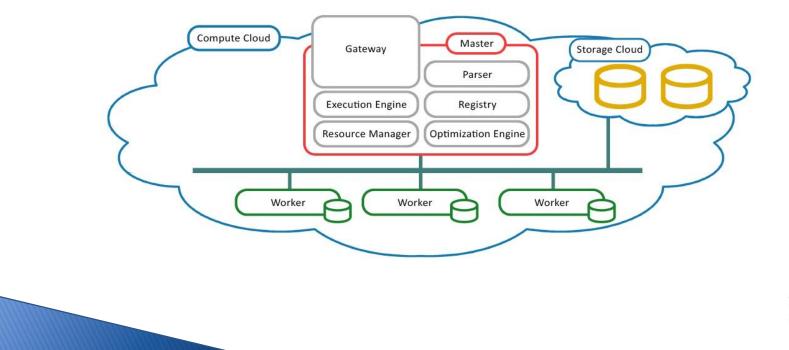
Anonymization Wizard						
Restart	newData.txt					
Source ~	Show 10 • entries Search:					
Manage	zipcode	11	age	creditcard ii	gender It	salary
Load From Local Load From Zenodo	56335		58	5.557783527541459E15	Male	8700
	57255		36	5.418686973265201E15	Female	9700
Anonymized <	98559		32	5.527060358825468E15	Female	6800
Hierarchy <	28700		58	5.312916958971375E15	Male	4700
Algorithms	68925		52	5.541858987662877E15	Male	5700
egontrims	96338		38	5.155271703366251E15	Female	7100
Solution Graph	19840		38	5.485337334153888E15	Male	6000
2 Results	48772		32	5.293804792403628E15	Female	7000
	79641		19	5.275938856549264E15	Male	100
	72861		82	5.303041772852809E15	Male	4000
	Showing 1 to 10 of 999 entries					1 2 3 4 5 100 Net Anonymization Proceed to Hierarc

Privacy Preserving Data Mining

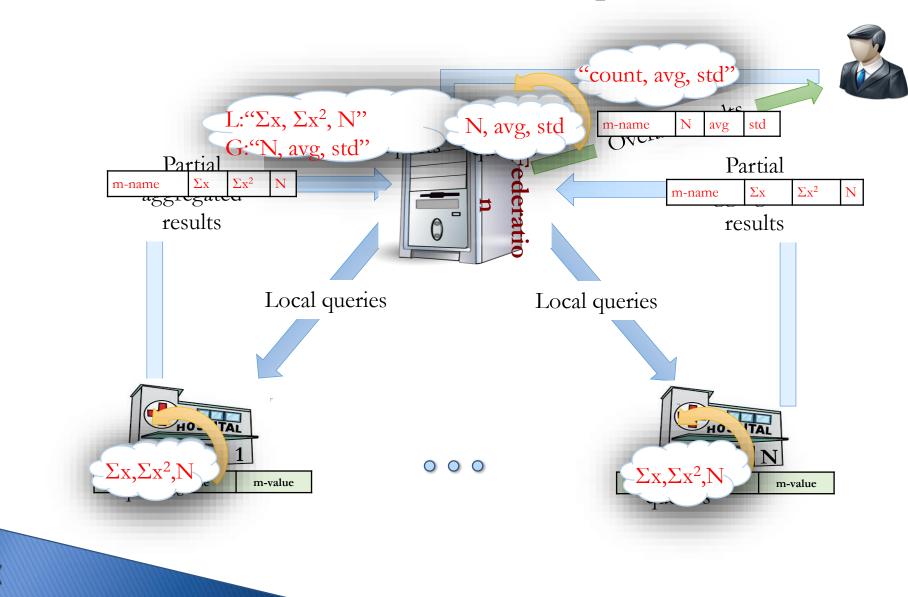
- The setting: Data is horizontally distributed at different sites on a Private Data Network (PDN) of mutually distrustfully parties
- The aim: Compute the data mining algorithm on the data so that nothing but the output is learned
 - Use secure computation using SMPC, encryption, DP etc
 - Assume Semi-honest types of adversaries that follow the protocol
 - Makes sense where the participating parties really trust each other (e.g., hospitals)
- Training (learning) vs Reasoning: different requirements and privacy related issues
 - training: needs access to patient records
 - reasoning: needs only the model and new data subjects but...
 - Inference from the results: One can break privacy using well specified queries and analyzing the results

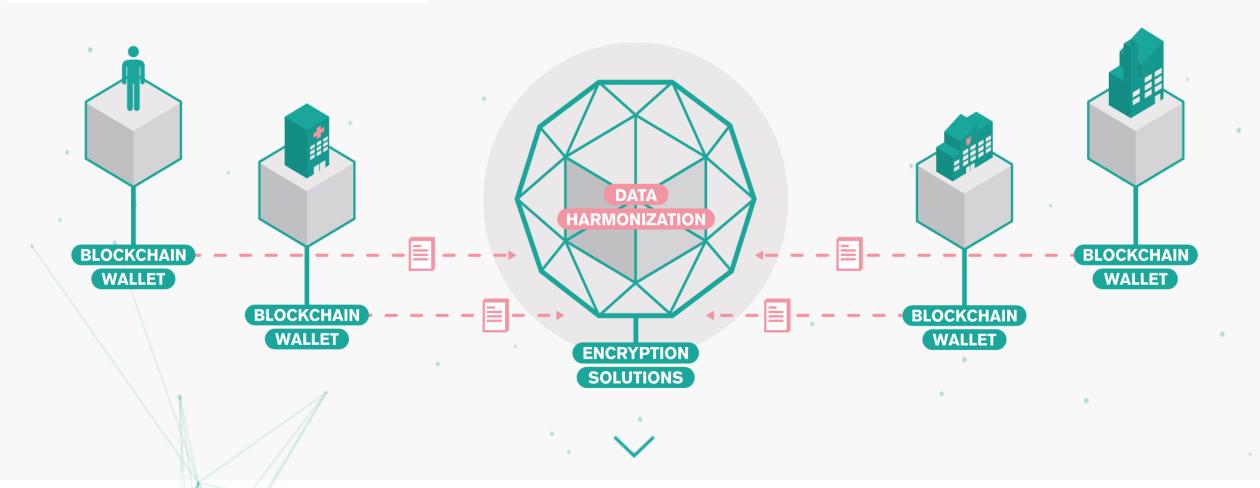
Distributed Privacy Preserving Data Mining: EXAREME

- Distributed elastic execution
- Iterative dataflow execution: Support ML algorithms
- Powerful data programming paradigm: SQL with User Defined Functions
- Privacy-aware query processing



Dataflow Execution Example





A NEW PARADIGM IN HEALTHCARE DATA PRIVACY AND SECURITY

THANK YOU