

Immunosurveillance and biomarkers in cancer: the means for more effective therapies

Constantin N. Baxevanis

Cancer Immunology and Immunotherapy Center St. Savas Cancer Hospital

The renaissance of immunotherapy is a revolution for cancer patients

The reactivation of preexisting T cell antitumor immunity is mandatory for the outcome of anticancer therapies

Definition of cancer

- 1) A tumor cell DNA disease Cell-centric paradigm
- 2) Due to the acquisition of secondary key behavioral characteristics following tumor genomic changes (Hanahan & Weinberg, *Cell* 2000, 2011)

-> Tumor aggressiveness, progression, invasion and recurrence define early and late stage cancers, and the severity of the disease

Novel paradigm

- Tumor progression, invasion and recurrence are dependent on pre-existing immunity and on Immunoscore
- ✓ Pre-existing immunity is determining the fate and survival of the patient
- ✓ Pre-existing immunity is determining the likelihood of response to immunotherapy

ORIGINAL ARTICLE

Effector Memory T Cells, Early Metastasis, and Survival in Colorectal Cancer

Franck Pagès, M.D., Ph.D., Anne Berger, M.D., Ph.D., Matthieu Camus, M.Sc.,
Fatima Sanchez-Cabo, Ph.D., Anne Costes, B.S., Robert Molidor, Ph.D.,
Bernhard Mlecnik, M.Sc., Amos Kirilovsky, M.Sc., Malin Nilsson, B.S.,
Diane Damotte, M.D., Ph.D., Tchao Meatchi, M.D., Patrick Bruneval, M.D., Ph.D.,
Paul-Henri Cugnenc, M.D., Ph.D., Zlatko Trajanoski, Ph.D.,
Wolf-Herman Fridman, M.D., Ph.D., and Jérôme Galon, Ph.D.*

Memory T cells, in particular, T_{EM} correlate with the absence of early-metastatic invasion, and improved clinical outcome in colorectal carcinoma.

Pagès F, et al. **N Engl J Med**. 2005 Pagès F & Galon J. **N Engl J Med**. 2006

CIIC

A Novel Paradigm for Cancer

✓ Quantification of immune cell densities (n=415 Patients, 6640 IHC) revealed the major positive role of cytotoxic and memory T cells for patient's survival

Intratumoral immune signatures as prognostic and predictive markers

CIIC

Intratumoral immune signatures as prognostic and predictive markers

Differential densities of CD8+ and CD163+ cells in different tumor compartments as prognostic biomarkers for DFS and OS in Breast Cancer patients

CD8 HL/ CD163LH

TC: tumor center IM: invasive margin

Fortis SP et al, J Immunother Cancer. 2017 Apr 18;5:39

Differential densities of CD8+ and CD163+ cells in different tumor compartments as prognostic biomarkers for DFS and OS in Breast Cancer patients

CD8 LH/ CD163HL

TC: tumor center IM: invasive margin

Combined CD8/CD163 100-90· 80· 70· DFS 60· 50-FCIS vs UCIS Log rank p= 0.0216 40· Gehan Breslow p= 0.0070 Hazard ratio= 0.2242 30 2 6 8 10 years 100 90· 80· 70· SO 60· 50-FCIS vs UCIS Log rank p=0.0041 40· Gehan Breslow p= 0.0057 Hazard ratio= 0.1016 30 0 2 6 8 10 years UCIS (n=17) FCIS (n=28) --- HH/HH (n=21) --- Rest (n=31)

Fortis SP et al, J Immunother Cancer. 2017 Apr 18;5:39

Differential densities of CD8+ and CD163+ cells as prognostic biomarkers for DFS and OS in Breast Cancer patients

Fortis SP et al, J Immunother Cancer. 2017 Apr 18;5:39

Peripheral and Local reaction to vaccination as predictive biomarker

Holmes JP et al. J Clin Oncol 2008; 23:3426, Perez SA et al. Clin Cancer Res 2010;16:3495, Perez SA et al. Cancer Immunol Immunother 2013;62:1599, Perez SA et al. Cancer Immunol Immunother 2014;63:1141, Anastasopoulou EA et al. Cancer Immunol Immunother 2015; 64:11239, Anastasopoulou EA et al. , Oncoimmunology 2016,5(7):e1178439

Vaccination schedule with AE37

Breast cancer

Toxicity profile

Dermal reactions during vaccinations

Local reaction and IFNγ response to AE36 as predictive biomarkers for PFS in prostate cancer patients

LR1: after the 1st vaccination IFNy-AE36: Preexisting IFNy response to AE36

> high or low preexisting immunity defined by cutoff finder software (high;≥10 mm or 25 spots)

LR1 as a predictive biomarker of clinical response in vaccinated breast cancer patients

median follow up 54 months (range 9-97) ALL patients Lymph node positive Pts Advanced stage (IIb/III) patients 100 100 100 LR1 high (74) th. LR1 high (n=43) iac...c LR1 high (n=43) LR1 low (65) the contract of LR1 low (n=47) LR1 low (n=29) ALL 90· 90· 90· ALL ALL bound to contract of the Research and a second second 80 80 80 Alles and a second second second so SO SO 70· 70· 70 60 60 60 Log-rank p= 0.0154 Log-rank p= 0.0592 Log-rank p= 0.0214 HR 0.1780 HR 0.2394 HR 0.1432 50-50-50· 0 20 40 60 80 100 0 20 40 60 80 100 0 10 20 30 40 50 60 70 80 90 100 months months months **HER2 OE patients HER2 LE patients TNBC** patients 100 100 100 LR1 high (n=38) LR1 high (n=35) LR1 high (n=12) bu LR1 low (n=33) LR1 low (n=32) LR1 low (n=8) dates. C. C. C. C. C. MILL, D. C. C. C. MILL, MULL, C. C. MILL, MULL, ALL ALL ALL 90 90 90-80 80 80· So S So

70-

60·

50·

0

Log-rank p= 0.0732 HR 0.07387

20

40

months

i. . . .

60

80

OS of vaccinated patients

70-

60

50·

0

Log-rank p= 0.0577

40

months

60

80

100

HR 0.2089

20

70·

60·

50-

0

Log-rank p= 0.1220

40

months

60

80

100

HR 0.1112

20

Peripheral immune biomarkers

AE37 paradigm for identifying the role of TGF6, IFNy and DTH as predictive biomarkers

(Holmes JP et al. J Clin Oncol 2008; 23:3426, Perez SA et al. Clin Cancer Res 2010;16:3495, Perez SA et al. Cancer Immunol Immunother 2013;62:1599, Perez SA et al. Cancer Immunol Immunother 2014;63:1141, Anastasopoulou EA et al. Cancer Immunol Immunother 2015; 64:11239, Anastasopoulou EA et al., Oncoimmunology 2016,5(7):e1178439)

-: direct correlations

-: inverse correlations

OS in AE37 vaccinated prostate cancer patients

HLA status and response to immunotherapies

Criteria for defining high responders among AE37-vaccinated patients

Pt no	IFNY	DTH	classificatio n	HLA alleles
8	R1-R5 + R6/LT	-	R	A24/DR11
10	R4-R5 + R6/LT	R6-LTB	HR	DR11
11	R1-R4 + R6/LT	-	R	A2
12	R1-R3 + R6-LTB	LT/LTB	HR	DR11
13	-		NR	A2
14	R2/R3 + LT/LTB	R6-LTB	HR	A24/DR11
15	R3-R5 + R6-LTB	R6-LTB	HR	A24/DR11
16	R1-R5 + R6-LTB	R6-LTB	HR	A24/DR11
17	R2/R3 + R6-LTB	-	R	DR11
19	-	-	NR	A2/A24
20	R1-R5 + R6-LTB	R6-LTB	R	A2/A3
21	R1-R5 + LT/LTB	R6-LTB	R	A2/A3
22	-	R6-LTB	R	A2
23	-	R6-LTB	R	A2
24	R2-R5 + R6-LTB	-	R	AVDR11
25	-	LT/LTB	R	A:4/DR11
26	R1-R3 + LT	R6-LTB	R	A3/A11
27	R1-R5 + R6/LTB	R6-LTB	HR	A24
28	R4/R5 + LT/LTB	LT/LTB	HR	A24/DR11
29	R4/R5 + LTB	R6-LTB	HR	A24/DR11
30	R1-R5 + LTB	R6-LTB	HR	A24/DR11
31	R2-R5 + R6/LTB	R6-LTB	HR	A24/DR11

Criteria for response: HR: IFNγ; SI>4 DTH; >20mm R: IFNγ; SI>2-4 DTH; >10-20 mm NR: IFNγ; SI<1.5 DTH; <5mm

HR: A24/DR11 (n=7) DR11 (n=2) A24 (n=1) R: A24/DR11 (n=2) A2 (n=3); A2/A3 (n=2) DR11 (n=1) A3/DR11 (n=1) A3/A11 (n=1)

NR: A2 (n=1) A2/A24 (n=1)

CIIC

OS in AE37 vaccinated prostate cancer patients

Epitope spreading as peripheral immune biomarker

<u> Margeting</u> multiplecepitopesaonithe tumptceHarestricted preexisting antitumsrHcAllanelesity

Ex vivo detection of antigen specific CD8⁺ T cells for epitopes not included in the vaccine

Anastasopoulou E. et al, Oncoimmunology 2016,5(7):e1178439 Voutsas I.F. et al , J. Immunother. Cancer 2016,15;4:75

HLA-A24 restricted preexisting immunity and boosting following vaccination with AE37

Preexisting immunity in HLA-A24+ vaccinated prostate cancer patients: correlations with PFS

Voutsas I.F. et al, J Immunother. Cancer 2016,15;4:75

HLA-A2 restricted preexisting immunity and boosting following vaccination with AE37

Voutsas I.F. et al, J Immunother. Cancer 2016,15;4:75

Preexisting immunity in HLA-A2+ vaccinated prostate cancer patients: correlations with PFS

Adaptive immune resistance

Examples of adaptive immune resistance

Tumor IFNy signaling regulates multigenic immune checkpoint resistance

JL Benchi et al , Cell 2016; 167;1540

Immune resistance by tumor cells during equilibrium

Zitvogel L and Kroemmer G , Immunity 2014, 41:345

Adaptive immune resistance in the periphery

Stage IV melanoma patients receiving IPI as immunotherapy

Tallerico R. et al. Oncoimmunology 2016;6:e1261242

Adaptive immune resistance in the periphery

Localized prostate cancer: pre-surgery ADT ± IPI

High frequencies of cells

Gao J. et al. Nature Medicine 2017; 27 March

Vaccination induces infiltration of IFNy producing T-cells within the tumor with up-regulation of PD-L1

Fong L et al J Natl Cancer Inst 2014 S24;106; Rekoske BD et al Oncoimmunology. 2016;5:e1165377

Effects of tumor oriented therapies on the endogenous antitumor immunity: III kinase inhibitors

Effects of tumor oriented therapies on the endogenous antitumor immunity: III kinase inhibitors

MUTATIONAL LOAD vs CLINICAL RESPONSES: Can neoantigens enhance clinical benefit from immune checkpoint inhibition? Does anti-PD-1 treatment expand preexisting T cells specific for neoantigens?

Clin Cancer Res; 22(4) February 15, 2016

Immunoscore and Microsatellite Instability as Predictors of Patient Survival

Mlecnik B. et al. Immunity, 2016

The frequency of Immunoscore-based groups (I0, I1, I2, I3, I4) in MSS and MSI patients.

Frequency of the 50% highest PD1 and 50% lowest patients in Immunoscore categories I0–I2 and I3 and I4

Mechanisms Revealing a Higher Immunogenicity of MSI Patients

Immunity 44, 698–711, March 15, 2016

Kaplan-Meier estimates of disease-specific survival according to Immunoscore

Kaplan-Meier estimates of disease-specific survival according to the microsatellite instability status and Immunoscore

Kaplan-Meier estimates of overall survival according to the microsatellite instability status and Immunoscore

Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade

(Le DT et al., Science, June, 2017)

Summary of therapeutic response to Pembrolizumab treatment in patients with MSI and different types of cancer

Type of response	Patients (n = 86)
Complete response	18 (21%)
Partial response	28 (33%)
Stable disease	20 (23%)
Progressive disease	12 (14%)
Not evaluable	8 (9%)
Objective response rate	53%
95% CI	42% to 64%
Disease control rate	77%
95% CI	66% to 85%
Median progression-free survival time	NR
95% CI	14.8 months to NR
2-year progression-free survival rate	53%
95% CI	42% to 68%
Median overall survival time	NR
95% CI	NR to NR
2-year overall survival rate	64%
95% CI	53% to 78%

Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade

(Le DT et al., Science, June, 2017)

Summary of therapeutic response to Pembrolizumab treatment in patients with MSI and different types of cancer

Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade

(Le DT et al., Science, June, 2017)

1.Oligoclonal transcripts for TCR Vβ CDR3 in peripheral blood in 3 responders

Q1: T cell clones expressing these transcripts were not identified (specificity and function, unknown)

2. Specificity of expanded T cells from 1 responder was tested vs 15 MANAs (mutation-activated neoantigens). IFNy responses in 7/15 MANAs

Q2: no other tumor antigens were tested for expansion and testing

3. Oligoclonal TCR V β CD3 transcripts in peripheral blood after expansion with 3/7 MANAs from the same responder

Q3: T cell clones were not identified. Function, unknown

4. Analyses of T cell frequencies specific for universal tumor antigens before and during treatment were not performed

Q4: Unknown, if anti-PD-1 works through expansion of preexisting immunity to non-mutated antigens

5. No significant differences in the number of Mutations in clinical responders vs non-responders vs progressors after stable-disease

Q5: anti-PD-1 works in the context of a mixed phenotype (immune infiltrates, mutations, tumor antigens, tumor environment, PD-1 expression)

Neoantigen-reactive T cells in the periphery

PD-1+

TCR recognizing the autologous tumor

however

At low frequencies (max. 0.04% - 1.0%) Recognize approx. 0.5% - 1% of the predicted neoantigens

Questions

- Are computational predictions of neoantigens inadequate?
- Does the tumor suppress reactive T cells or induce their death?
- Can we improve T cell responses to and make them responsive to a greater number of neoantigens?

Response to anti-PD-1

 \downarrow

Acquired Immune Resistance Up-regulation of alternate ICP HLA loss/down regulation Jak1/Jak2 mutations

More?

Loss of mutation-associated neoantigens (MANAs) through tumor cell elimination or chromosomal deletion

Anagnostou V et al. Cancer Discov. 7:264, 2017

Conclusions

- Tumor evolution: cross-talk between tumor cells and immune cells.
- Identification of signaling pathways for the interplay between immune system and tumor cells.
- Biomarkers are key-elements regulating immune cell-tumor cell interactions.
- Biomarkers need to be targeted for re-activating pre-existing immunity and pave the way for applying immunotherapies and targeted therapies.
- Tumor cells use various methods to evade immune surveillance. Therefore combinatorial treatments are urgently needed.
- The antitumor immune phenotype may be shaped by multiple parameters including immunoscore, MSI, altered HLA expression, tumor antigens, mutational pathways and microenvironmental factors.

St Savas Cancer Hospital, Athens, Greece

Cancer Immunology Immunotherapy Center

Baxevanis CNAnastasopoulou EPerez SAFortis SVoutsas IFAnastasopoulos NMahaira LKalogeropoulou I

Tzonis P Pistalmatzian N, MD Haritos C Papamichail M

Urology Clinic

Thanos A Anagnostou T Bissias S

1st Medical Oncology Department Ardavanis A

Pathology Department

Arnogiannaki N Sotiriadou N Sofopoulos M

Antigen Express Inc, Boston, USA Humphreys R von Hofe E Kallinteris N

University of Texas, MD Anderson Cancer Center, Houston, USA Mittendorf EA Peoples GE Progress In Vaccination Against Cancer -17 (PIVAC-17) LOUTRAKI 27-30 Sept. 2017 http://pivac17.eu/

Predictive biomarkers in cancers: an interplay between immune system and tumor cells

The renaissance of immunotherapy is a revolution for cancer patients

The cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) immunologic checkpoint

The programmed cell death protein 1 (PD-1) immunologic checkpoint

Antibodies blocking immune checkpoints rescue tumor-reactive T cells from suppression

Immunoediting

Conclusion: Successful immunotherapies unleash natural pre-existing T cells

The indispensable role of IFNy in the landscape of immunoediting

Cell 2017 Jun 1;169:1130-1141 Cell. 2017 Feb 9;168:707-723

Targeting immuno-supression *PD-1/PD-L1 pathway*

- PD-1/PD-L1 interaction inhibits T cell activation, attenuates target killing: prevents overstimulation of T cells during acute virus infection
- A large percentage of tumors also upregulate PD-L1 and evade killing by T cells
- Blocking PD-1 binding restores effector T cell activity

"Adaptive expression" of PD-L1

Immunoscore and Microsatellite Instability as Predictors of Patient Survival

Reinstating preexisting (endogenous) cancer-specific immunity is the key for the successful outcome of immunotherapies

Can high density of neoantigens enhance clinical benefit from immune checkpoint inhibition? Does anti-PD-1 treatment expand preexisting T cells specific for neoantigens?

N E O E P I T O P E S

Peptides derived from somatic mutations binding to patient's MHC and recognized by autologous T cells

Why use neoepitopes as therapeutic cancer vaccines?

- Favorable safely profile due to lack of expression in healthy tissues
- High likehood of immunogenicity; no subjected to immune tolerance

Antagonizing pathways via JAK/STAT signaling

The roadmap to immune-based cancer therapies

LR1 as a predictive biomarker of clinical response in vaccinated breast cancer patients

DFS of vaccinated patients

median follow up 54 months (range 9-97)

CIIC

DTH as predictive biomarker of clinical response in vaccinated Breast Cancer patients

high or low DTH defined by cutoff finder software (high;>17.5 mm)

CIIC

Immune checkpoint molecules-signaling pathways

CIIC

Immune checkpoint blockade

The antitumor phenotype has multiple parameters

Addition of either anti-PD1 or anti-PD-L1 blocking antibody to BRAF inhibitors leads to enhanced antitumor response in melanoma

Duration of response

Cooper ZA et al. OncoImmunology 3:9, e954956;2014

The immune system "shapes" tumor evolution

The cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) immunologic checkpoint

The programmed cell death protein 1 (PD-1) immunologic checkpoint

The Immunoediting cycle

