

Hydrogen compression and storage through a Metal Hydride based Compressor

Dr. George Tzamalis, HYSTORE TECHNOLOGIES, Cyprus

Hystore Technologies Ltd.

Presentation's Structure

- Hystore Technologies Ltd
- Metal Hydride basics
- MHC's operational principle
- Experiments Results
- ATLAS-MHC project

- Established in August 2003
- Privately own SME
- Research & Development, Production, Consultation in Industry and Academia
- Main area of Activity: RES & Hydrogen, Design, construction of PV Parks, Hydrogen Technologies, "Green" Hydrogen Production, Storage and Utilization, Hydrogen Compression, H2/Fuel Cells,
- Metal Hydride Tanks (MHT) with a capacity of 10X litersH2 storage
- We are a unique (probably the only one in EU) European Company producing MHT - MHC

Facilities (Ergates Industrial Area)

Grid-connected Photovoltaic Station (5.25kW) Producing and Recording the Actual Electricity Output since 2006

- Hystore Technologies Ltd succeeded on getting FOUR (4) licenses for the installation and operation of PV parks with a capacity of 150 KW each.
- They are in operation since November 2010.

Τα πρώτα τέσσερα Φωτοβολταϊκά Πάρκα

Hystore Technologies Ltd

First PV-Parks in Orounta-Cyprus 4X150 kW

στην Κύπρο συνολικής ισχύος 600 KW κατασκευάστηκαν από την εταιρεία Hystore Technologies Ltd και λειτουργούν από το Νοέμβριο του 2010

Metal Hydride basics

- Metal alloys
- H₂ absorption inside lattice structure
- H₂ desorption from lattice strucuture
- High weight storage medium
- Low hydrogen pressure

Metal Hydride basics Thermodynamics

• H₂ absorption - desorption

$$M + \chi/2 H_2 \leftrightarrow MH\chi$$

• Equilibrium pressure increases with temperature according to van't Hoff relation:

Metal Hydride basics

• Main characteristic: Desorption pressure > absorption pressure in higher temp.

- Cold water supply during H₂ absorption
- Hot water supply during H₂ desorption in higher temp.

MHC's operational principle

• Taking advantage of metal hydride's main characteristic and by employing successively higher pressure hydride alloys in stages and in series, high pressure ratios are generated

- H₂ absorption pressure < H₂ desorption pressure for each MH in each stage
- Progressive hydrogen pressure increase from stage-to-stage

Experiments

- Main objective \rightarrow PCT curve for each MH in every stage
- Experimental valve setup

• Fully automated operation based on LabVIEW software

Experiments

- MH sample preparation
- MH sample activation under vacuum

- Temperature range: 10 80 °C
- Pressure range: 1 200 bar

Experiments

- AB₅ and AB₂ type MH measured
- $AB_5 \rightarrow A$: La, B: Ni
- $AB_2 \rightarrow A$: Ti, Zr και B: Cr, Mn, Fe, V

MHC's stage	Metal Hydride code name	Metal Hydride type
1	LN603-2	AB ₅
2	Τ ₉	AB ₂
3	T ₃	AB ₂
4	T ₁₁	AB ₂
5	VF ₂₆	AB ₂
6	VF ₂₈	AB ₂

Pressure (bar)

3rd Stage T3 4th Stage T11 100 100 Pressure (bar) 0 10 ---Abs/Des at 10°C ---Abs/Des at 10°C --Abs/Des at 20°C Abs/Des at 20°C ---Abs/Des at 80°C --Abs/Des at 80°C T3=Ti.0.95Zr0.05Cr1.20Mn0.60Co0.20 T11=Ti.0.80Zrd.20Cr0.95Fe0.95V0.10 50 0 100 150 200 250 50 100 150 200 250 0 Hydrogen Concentration (NliterH₂/kg) Hydrogen Concentration (NliterH₂/kg) H_2 absorption: <20 bar H_2 absorption: <30 bar H₂ desorption: 50 - 60 bar H₂ desorption: 30 bar

• PCT Curves for every stage in 10 °C

• Metal Hydride based Compressor with no moving parts (P > 200 bar)

MHC's construction based on Metal Hydride experimental results

- Integrates separate cold and hot water supply system
- Cooling temperature \rightarrow 10 °C
- Hot water temperature \rightarrow 80 °C

Results MHC's construction

- Double tubes
- Metal hydrides are in direct contact with copper tubes

Results MHC's operation

MHC's P – T graph

H₂ Cylinder Filling Capacity

"Advanced Metal Hydride Hydrogen Compressors – Pilot development and Market Penetration"

(ATLAS – MHC, FP7-PEOPLE-2013-IAPP/612292, 2014 - 2018)

http://www2.ipta.demokritos.gr/atlas-mhc/index.html

1. National Centre of Scientific Research "Demokritos" (NCSRD), Patr. Gregoriou E' & 27, Neapoleos str., PO Box 60037, Postal Code 15341, Agia Paraskevi, Athens, Greece

2. HYSTORE Technologies Ltd., 30 Spyrou Kyprianou, Ergates Industrial Area, Nicosia 2643, Cyprus

3. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Solar Research, Karl-Heinz-Beckurts-Str.13, 52428 Jülich, Germany

4. DIADIKASIA S.A., Business Consultants, 296 Kifissias Av. & 40 Navarinou Str., 152 32, Chalandri, Athens

THANK YOU FOR YOUR ATTENTION