

REPURPOSING COMMON ANTI-FIBROTIC DRUGS TO IMPROVE EFFICACY OF CANCER NANOMEDICINES

Triantafyllos Stylianopoulos, Ph.D.

The tumor micro-environment

Leakiness of tumor vessels

Normal vessels (pore size: 7-12 nm)

Tumor vessels (pore size: 10 nm – 2 μm)

(Jain R. K., Scientific American, 2008)

Hypo-perfusion Downstream: Reduced flow Upstream: Leakiness

Excessive fluid loss from the vascular to the interstitial space reduces blood velocity: <u>Hypo-perfusion</u>.

>Hypo-perfusion compromises drug delivery.

Generation of solid stresses/vessel compression

Compression of tumor vessels

compression reduces perfusion

(Stylianopoulos T et al., Cancer Research, 2013)

Heterogeneous Perfusion

Strategies to enhance therapy

- 'Vascular normalization' decrease vessel leakiness
- □ 'Stress Alleviation' decompress tumor vessels

(Jain RK, Nat Med 2001; T Stylianopoulos and RK Jain, PNAS, 2013; Stylianopoulos T et al., Ann Rev Biomed 8 Eng, 2014; Gkretsi V et al., Frontiers in Oncology, 2015; Papageorgis & Stylianopoulos, Int J Oncol, 2015)

Vascular normalization

Vascular normalization and nanomedicine

- 4T1 mammary adenocarcinoma cells were implanted in the mammary fat of SCID mice.
- A solution of quantum dots (12, 60, 125 nm) was injected i.v. and their trans-vascular transport was measured with multi-photon microscopy.
- DC101 normalizes the tumor vessels.

(Chauhan VP, Stylianopoulos T et al., Nature Nanotechnology, 2012)

Strategies to enhance therapy

'Vascular normalization' – decrease in vessel leakiness

Stress Alleviation' – decompression of tumor vessels

Re-Engineering cancer

Repurposing common anti-fibrotic drugs to alleviate intratumoral stresses

 Tranilast (Rizaben, Kissei Pharmaceuticals)
Approved in Japan and S. Korea as an anti-fibrotic and anti-allergic drug.

(P. Papageorgis et al., Scientific Reports, 2017)

Pirfenidone (Esbriet, Roche Pharmaceuticals)

Approved worldwide for idiopathic pulmonary fibrosis

(C. Polydorou et al., Oncotarget, 2017)

Solid and fluid stress alleviation

Improved perfusion and drug delivery

Stress alleviation improves tumor perfusion and delivery of doxorubicin in the tumor but not in other organs

Improved efficacy of chemotherapy

Stress alleviation improves efficacy of doxorubicin in orthotopic breast tumor models

Tranilast increases the efficacy of ABRAXANE^ ${\ensuremath{\mathbb{R}}}$ and DOXIL $^{\ensuremath{\mathbb{R}}}$

Repurposing Vismodegib to target CAFs

Vismodegib targets cancer-associated fibroblasts (CAFs)

(F. Mpekris,, T. Stylianopoulos, J. Controlled Release, 2017)

Solid and fluid stress alleviation

(F. Mpekris,, T. Stylianopoulos, J. Controlled Release, 2017)

Improved efficacy of $ABRAXANE^{\mathbb{R}}$ and $DOXIL^{\mathbb{R}}$

Vismodegib improves efficacy of common nanomedicines

(F. Mpekris,, T. Stylianopoulos, J. Controlled Release, 2017)

Acknowledgements

Cancer Biophysics Lab members:

Drs. Panos Papageorgis, Christiana Polydorou

Drs. Vasiliki Gkretsi, Thanos Pirentis,

Drs. Andreas Stylianou, Fotios Mpekris

PhD students: Valantis Voutouri, Stelios Angeli, Maria Kalli, Maria Louca, Christos Machattos

European Research Council Starting Grant (ERC-2013-StG-336839 ReEngineeringCancer)

Horizon 2020 - Marie Skłodowska-Curie Individual Fellowship (MSCA-IF-2014-657139 STROMAMECH)

Funding from:

European Research Council Established by the European Commission

Figure 6B

Re-purposing losartan (Cozaar, Merk)

Pre-losartan

Post-losartan

Losartan treatment reduces collagen levels and improves vessel functionality in mice bearing breast tumors

(Chauhan VP et al., Nature Communications, 4:2516,10.1038/ncomms.3516, 2013)