

Integrated, Innovative Renewable Energy – Hydrogen Systems and Applications Workshop

BENCHMARK ANALYSIS & PRE-FEASIBILITY STUDY FOR THE MARKET PENETRATION OF METAL HYDRIDE HYDROGEN COMPRESSORS

> Dr. Emmanuel Stamatakis Adjunct Researcher – NCSR DEMOKRITOS/DBC

What is a Metal Hydride Hydrogen Compressor?
Identification of Target Markets
TECHNO-ECONOMICAL ANALYSIS
Conclusions

Metal Hydride Hydrogen Compressor (MH2C)

In general, a Metal Hydride Hydrogen compressor is a compressor that works by absorbing hydrogen at low pressure and temperature and desorbing it at a higher pressure by raising the temperature with an external heat source like a heated water bath. **Metal hydrides** are special alloys that can chemically store hydrogen in their metallic lattice.

Metal hydrides basic principle

This operating principle called thermal hydrogen compression system – based on the equilibrium pressure as a function of temperature and hydrogen content of the hydride – can offer an innovative economic alternative to traditional mechanical hydrogen compressors apart from the technical application for hydrogen storage in solid

MH2C Advantages

Non-mechanical hydrogen compressors have several advantages over the mechanical ones, including:

- ✓ smaller size
- ✓ lower noise levels
- ✓ lower operating and maintenance costs
- ✓ Increased efficiency (especially when using available heat wastes or excess renewable energy to feed the chemical compressor)
- ✓ Flexibility over a wide range of compression

Moreover, since the hydrogen absorption-desorption plateau pressure of a metal hydride (MH) varies with temperature according to the van't Hoff equation (In $P = \Delta H/RT - \Delta S/R$), the MH compressors are thermally powered systems that use the ability of reversible metal hydrides to compress hydrogen without any contamination.

A van't Hoff plot illustrating the operation of a two-stage Metal Hydride Hydrogen Compression

Identification of Target Markets and other Market Issues

Based on the clear advantages of MH2C, we have identified two major niche markets

- 1. RES & H2 autonomous power systems of islands and
- 2. Hydrogen filling stations for vehicles.

A comparison from the economic point of view to the conventional (mechanical) hydrogen compressor, presented by DaCosta (2000), supports our identification.

	MHH Compressor	Mechanical Compressor
Hydrogen Flow	56.63 Nm3/h	56.63 Nm3/h
Inlet Pressure	6.89 bar	6.89 bar
Outlet Pressure	248.2 bar	248.2 bar
Number of Stages	5	3
Weight	100 kg	3,600 kg
Volume	400 liters	6,000 liters
Hot Water Flow (waste heat)	50 gpm @ 90 C	-
Heat Energy Required	240 kBTU/h	-
Cooling Water Flow	50 gpm @ 30 C	20 gpm @ 30 C
Electrical Power	500 watts	20,000 watts
Estimated Capital Cost	€ 130,000	€ 145,000
Annual Power Cost (2,000 h/y, €0.10/kWh)	€100	€ 4,000
Annual Maintenance Cost	€1,000	€ 8,000

Comparison of MH2Cand Mechanical Hydrogen Compressors

Comparison of MH2C & Mechanical Hydrogen Compressors

From the previous Table, it is evident that thermal Compressors offer significant advantages over mechanical compression:

- They present significantly lower weight and volume compared to mechanical compressors
- > They have slightly lower capital cost
- > They have significantly lower operation and maintenance costs
- > They consume significantly lower energy to operate
- Waste heat from renewable energy sources can be used in metal hydride compressors.

Integration of MH2C in an island micro-grid

> *Methodology and tools*

- The simulation and optimisation of the case study has been performed by using the <u>HOMER software</u> tool by NREL
- We used information and data on natural resources from the power system of Milos island (such as wind and solar irradiance data, electric and thermal loads, economic constraints, current and future equipment costs, user behaviour and control strategies)
- The main purpose was to investigate the impact of diesel generators and batteries replacement with hydrogen technologies, including electrolysers, metal hydride hydrogen compressors, and fuel cells both in technical and financial terms.

Case study analysis

• The annual electricity demand of Milos island is approximately 39,729 MWh with peak demand equal to 8.5 MW. In order to meet this demand, the existing power system includes 8 thermal generator sets with a total capacity of around 11.25 MW and a small wind park comprising 3 wind turbines with a total installed capacity of 2.05 MW. Based on the simulation results, the existing power system delivers electricity at a cost equal to 113 €/MWh.

MILOS OVERVIEW

- Southwest part of the Aegean Sea, Cyclades
- 86 nautical miles from Athens
- Area: 151 km², Coastal line: 125 km
- 5.000 people live there permanently
 - the population rises about 5 times during the summer period due to tourism

HOMER Software

- Developed by NREL, USA (<u>http://www.nrel.gov/homer</u>)
- Hybrid Optimization Model for Electric Renewables
- HOMER is a computer model that simplifies the task of evaluating design options for both off-grid and grid-connected power systems for remote, stand-alone, and distributed generation (DG) applications.
- HOMER's optimization and sensitivity analysis algorithms allow you to evaluate the economic and technical feasibility of a large number of technology options.

W HOUSE trauballarea wind bydrogon												
in However, frauderen winden viele												
Equipment to considerAdd/Remove	9	alculat	е	Simu Sen	ulations: 0 c sitivities: 0 c	of 256 of 1	Progress: Status:					
Hydrogen tank	Sensitivi	ty Resu	ilts Op	otimizati	on Results							
	Double c	lick on	a syster	m belov	v for simulati	on results.						
Wind turbing		WT [FC	Elec.	H2 Tank	Initial	Operating	Total	COE	Ben.	Capacity	FC
			(kW)	(kW)	(kg)	Capital	Cost (\$/yr)	NPC	[\$/kWh]	Frac.	Shortage	(hrs)
	本之二	7	30	40	400	\$ 563,440	8,013	\$ 644,417	1.508	1.00	0.01	1,670
	- P	2	30	45	400	\$ 571,590	8,112	\$ 653,573	1.530	1.00	0.01	1,670
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		30	35	450	\$ 576,570	7,721	\$ 654,601	1.532	1.00	0.01	1,670
Fuel Cell Primary Load 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	30	45	500	\$ 580,150	7,586	\$ 656,817	1.537	1.00	0.01	1,734
. 34 kW peak	L 1 🐔 🍋	<u>_</u>	30	40	450	\$ 584,720	7,821	\$ 663,757	1.553	1.00	0.01	1,670
AL Other	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		35	40	400	\$ 578,440 ¢ E99 290	8,700	\$ 666,314	1.568	1.00	0.01	1,652
S Wind resource	T 🛼	7	20	45	400	\$ 583,230	7 920	\$ 670,636	1.565	1.00	0.01	1,606
	1 🐨 🀱	ź	30	35	500	\$ 597,850	7,520	\$ 673,941	1.573	1.00	0.01	1,670
System control	1 🗊 🏧	7	35	45	400	\$ 586 590	8,976	\$ 677,303	1.583	1.00	0.01	1.670
Emissions	1 🗊 😓	7	35	35	450	\$ 591,570	8,585	\$ 678.331	1.585	1.00	0.00	1.670
Constraints	1 (A) 🗫	8	30	40	400	\$ 597,440	8,149	\$ 679,792	1.591	1.00	0.01	1,606
	- La 🏞	6	35	45	500	\$ 595,150	8,512	\$ 681,167	1.592	1.00	0.00	1,734
Document	a 😓	7	30	40	500	\$ 606,000	7,629	\$ 683,096	1.599	1.00	0.01	1,670
Author	a 🖉	7	35	40	450	\$ 599,720	8,685	\$ 687,487	1.607	1.00	0.00	1,670
Notes	- A 💝	8	30	45	400	\$ 605,590	8,248	\$ 688,947	1.612	1.00	0.01	1,606
eal	- A 🚰	8	30	35	450	\$ 610,570	7,857	\$ 689,975	1.615	1.00	0.01	1,606
<u> </u>	小瓷	7	30	45	500	\$ 614,150	7,728	\$ 692,252	1.620	1.00	0.01	1,670
	- * *	8	35	35	400	\$ 604,290	8,851	\$ 693,736	1.621	1.00	0.00	1,606
	L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	35	45	450	\$ 607,870	8,784	\$ 696,642	1.628	1.00	0.00	1,670
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		35	35	500	\$ 612,850	8,393	\$ 697,670	1.631	1.00	0.00	1,670
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	30	40	450	\$ 618,720	7,957	\$ 699,131	1.636	1.00	0.01	1,606
		8	35	40	400	\$ 612,440	8,950	\$ 702,891	1.643	1.00	0.00	1,606
	1 T 💑	6	20	40	450	\$ 621,000	0,433	\$ 706,626	1.652	1.00	0.00	1,670
	1 50	8	30	35	500	\$ 631,850	7,665	\$ 709,207	1.650	1.00	0.01	1,606
	1 1 1	8	35	45	400	\$ 620 590	9.050	\$ 712 047	1.664	1.00	0.00	1,606
	1 🗐 🧏 🧏	8	35	35	450	\$ 625,570	8.659	\$ 713.075	1.667	1.00	0.00	1.606
	1 🗼 🦢	7	35	45	500	\$ 629,150	8,592	\$ 715,982	1.673	1.00	0.00	1,670
	1 (A) 😓	ė	30	40	500	\$ 640,000	7,765	\$ 718,471	1.681	1.00	0.01	1,606
	Jah 🧽	8	35	40	450	\$ 633,720	8,758	\$ 722,231	1.688	1.00	0.00	1,606

Architecture of the existing power system

8 Thermal Generator Sets
2 Sulzer 7TAF48 Units (1,75 MW each, Heavy Oil)

- 3 MAN G9V30/45 Units (0,7 MW each, Heavy Oil)
- 1 CKD 12V27,5-B8S Unit (2 MW, Diesel)
- 1 CKD 12V27,5-B8S Unit (1,9 MW, Diesel)

1 FINCANTIERI BL230.12P Unit (1,75 MW, Diesel) ■ 3 Wind Turbines

2 Vestas V – 44 (0,6 MW each)

1 Vestas V – 52 (0,85 MW)

Basic Inputs Heavy Oil Price: 0,34 €/L Diesel Price: 0,68 €/L Generators Capital Cost: 250 – 300 €/kW Wind Turbines Capital Cost: 1.000 €/kW Project Lifetime: 5 years

MILOS SIMULATION RESULTS Existing power system

MILOS SIMULATION RESULTS Existing power system

■ Levelized COE: 113 €/MWh

 Wind Turbines Power Production: 5,3 GWh/yr

Renewable Fraction: 0,134

Diesel: 715.296 L

 Heavy Oil: 3.054.864 L

- D 🖆 🗐 🗎 📓 🗳 📍	
Equipment to consider Add/Remove	Cabulate Simulations: Dof 1024 Progress Cabulate Canobination Dof 1 Statum
Vestas V - 52	Sensitivity Results Optimization Results
a 🗆	
Vestas V - 44	Child Cold Cold Cold Cold Cold Cold Cold Co
8	A C C C C C C C 1 2 1750 1750 700 700 1900 1750 \$4,475,000 3170,760 \$17,831,384 0.107 0.13 715,133 8,108,524 8,531 6,531 6,555 6,854 3,430 1,043 2,118 人気気気気気気気気気気気 1 2 1750 1750 700 700 700 700 2000 1900 1750 \$4,856,000 3,143,084 \$18,224,870 0.109 0.13 715,256 8,108,587 8,551 6,551 6,555 6,864 3,430 6 1,043 2,112
SULGER, 7TAF48	
N 1	▲ (空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空
	人内の内容の 12 1750 1750 700 700 1900 1750 \$4275,000 3,350,747 \$18,388,552 0,110 0.13 1,279,633 7,546,750 8,534 7,192 6,043 4,245 1,984 3,535 1,455 2,556 2,557 1,558 2,557 1,558 2,557 1,558 2,
	▲ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
	人口の方法である。 1 1750 1750 700 700 700 700 2000 1900 1750 \$3755,000 3544/223 \$18,724,580 0.112 0.06 815,602 8,723,115 8543 6,899 6,765 7,155 3,616 2 1,171 2,421
MAN, G9V30/45	ようないでは、12 1750 1750 1750 1750 1750 1750 1750 1750
Milos Load Profi 109 MWh/d	人) (法) (法) (法) (法) (法) (法) (法) (法) (法) (法
MAN, G9V30/45 8.9 MW peak	Good Good Good Good Good Good Good
MAN, G9/30/45	
CKD, 12V27, 5885	
CKD, 12/27, 5885	
FINCANTIERI, BL2	
Resources AC Other Other Mind resource Other Conomics	
Diesel System control	
Mazout Emissions	
Document	

The proposed RES & hydrogen-based power system for Milos island

According to the simulation results, the components of the optimum RES & hydrogen-based power system when hydrogen is introduced as energy storage medium in the power system are depicted in the following Table

Component	Туре	Number	Size
Mind Turking	V-52	28	850 kW (each)
wind furbine	V-44	2	600 kW (each)
	Sulger	2	1750 kW (each)
Thermal Generator	Man	2	700 kW (each)
	Rental	1	1032 kW
Fuel Cell	PEM	1	1 MW
Electrolyser	Alkaline	1	2 MW
Hydrogen Compressor	Metal Hydride	1	Up to 400 Nm3/h
Hydrogen storage tank	Compressed gas	1	4000 kg

Architecture of the proposed power system

Levelized COE: 112 €/MWh

- Wind Turbines Power Production: 32 GWh/y
- Renewable Fraction: 0,925
- Diesel: 154.905 L
- Heavy Oil: 8.108.687 L

	HOMER - [Milos Simulation_final]					
	The View Inputs Outputs Window H	telp				_ 8 ;
	D 🛥 🖃 🗟 🖩 🖉 ち					
Section Field Visited - Charge Visited - Charge <th>Equipment to consider</th> <th>move Simulations: C Calculate Sensitivities: C</th> <th>) of 1024 Progress:) of 1 Status:</th> <th></th> <th></th> <th></th>	Equipment to consider	move Simulations: C Calculate Sensitivities: C) of 1024 Progress:) of 1 Status:			
Water Deck dd on a yntm bloch dd on ynth Deck dd on ynth	Vestas V - 52	Sensitivity Results Optimization Result				
Verse V-44 User V-44		Double click on a system below for simula	vition results. V44 DG1 DG2 DG3	DG4 DG5 DG6 DG7	DG8 Initial Operating	Categorized © Overall Export Details Total COE Ren. Diesel Mazo
SULUER: Tracel Image: Sulue in tracel Image: Su	Vestas V - 44	4000000000	[[kW] [kW] [kW] 2 1750 1750 700 2 1250 1250 700	700 700 1900 700 200 200 1900	[kW] Capital Lost (\$/yr) 1750 \$ 4,475,000 3,064,883 1750 \$ 4,695,000 3,027,025	NPC (\$7kWh) Frac. [L] [L] \$17,385,400 0.104 0.13 704,723 8,121, \$17,789,222 0.106 0.12 706,926 9,119
SULER: TARK One 0 5 0 <	SULGER, 7TAF48		1 1750 1750 700 2 1750 1750 700 2 1750 1750 700	700 700 1000 1000 700 700 1900	1750 \$ 3,275,000 3,473,269 1750 \$ 3,625,000 3,393,534	\$17,905,674 0.107 0.06 804,644 8,737, \$17,919,800 0.107 0.07 784,596 8,613,1
Duality, Lower Image: Source of the sour			2 1750 1750 1 1750 1750 700	700 700 1900 700 700 2000 1900	1750 \$4,275,000 3,304,721 1750 \$3,795,000 3,445,561	\$18,195,684 0.109 0.13 1,159,527 7,674; \$18,308,956 0.110 0.06 805,003 8,736;
WAL GROUND Image: Solution of the solution of th	SULUEH, 71AP48	1000000000	2 1750 1750 700 2 1750 1750 700 2 1750 1750 700	700 700 2000 1900 700 1900	1750 \$ 4,145,000 3,365,799 1750 \$ 4,275,000 3,349,153 1750 4 4,275,000 2,355,799	\$18,322,970 0.110 0.07 785,123 8,611, \$18,382,850 0.110 0.13 1,266,340 7,571, \$19,415,772 0.110 0.13 1,266,340 7,571,
	MAN, G9V30/45		1 2 1750 1750 700 1750 1750 700 1 2 1750 1750	700 1300 700 700 1900 700 700 2000 1900	1750 \$ 4,275,000 3,356,557 1750 \$ 2,425,000 3,819,681 1750 \$ 4,795,000 3,276,880	\$18,514,896 0.111 0.03 1,282,800 7,554, \$18,514,896 0.111 0.00 921,688 9,197,1 \$18,598,410 0.111 0.13 1,160,905 7,670,1
	Milos Load Profi 103 Mwh/d 9 Mil/ Jonek		2 1750 1750 700 2 1750 1750 700	700 2000 1900 700 2000 1900	1750 \$4,795,000 3,319,565 1750 \$4,795,000 3,327,369	\$18,778,214 0.112 0.13 1,267,681 7,567, \$18,811,088 0.113 0.13 1,283,941 7,551,
	Note: Contraction of the peak	00000000	1750 1750 700	700 700 2000 1900	1750 \$ 2,945,000 3,792,146	\$18.918.896 0.113 0.00 921.688 9.197.
	MAN, G9V30/45					
OD. 1577: 5480 PROL 1	CKD, 12V27, 5885					
PROCESSION CONTRACTOR DE CONTR	CKD, 12V27, 5885					
Resources Action to compare the formation of	FINCANTIERI, BL2					
Image: Constraint Image: Constraint Image: Constraint Image: Constraint <th>AC Other</th> <th></th> <th></th> <th></th> <th></th> <th></th>	AC Other					
Macod	Vind resource de Economic Diesel System ci	*				
Document Adros Adros Image: Construction of the const	Mazout Emissions					
Andre Andre Scatter d' Completed in 13 seconds. Scatter d' Complete d'	Document Constraint					
6	Author Notes	×				
د ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب	Bo'					
		¢				3
🛃 start 🔰 🗗 🗃 🖉 🏟 🖓 🔟 🖬 🔍 🔄 🖄 🐐 👘 Inbar- Oution 🖉 http://www.po 📅 / Monselt O 🐚 Polit.E.I.X.M 🛛 👖 HCHER- (Ho IN 🛛 (A) 👘 🖉 🖉 🥥 🔇 (1.04 PM		Completed in 13 seconds.				
	🐉 start 🔰 🙆 🔯 🖉 😨	図 🔍 🧐 🦂 🦉 Inbox - Cuttoo	Chttp://www.po	🛙 2 Microsoft O 🔹 🏠 7o I	TLE.Z.X.M THOMER - [Mib	BI (0)(0) (0) (0) (0) (0) (0)

Financial analysis

Technology	Туре	Unit Cost	Initial Cost	Replacement Cost
	V-52	1,200 €/kW	19,992,000€	0 €
wind furbine	V-44	1,200 €/kW	1,008,000€	0 €
	Sulger	251 €/kW	880,000 €	88,000 €
Thermal Generator	Man	286 €/kW	400,000 €	40,000 €
	Rental	145 €/kW	150,000 €	0 €
Fuel Cell	PEM	3,000 €/kW	1,500,000€	450,000 €
Electrolyser + Hydrogen Compressor	Alkaline + Metal Hydride	2,000 €/kW	2,000,000 €	0 €
Hydrogen storage tank	Compressed gas	800 €/kg	1,600,000€	0 €
Total			27,530,000 €	

investment costs of the proposed RES & hydrogen-based power system

Financial analysis

Parameter	Туре	Unit Cost	Operational Cost
Wind Turking	V-52	17,340 €/year	485,520 €/year
wind Turbine	V-4 4	12,240 €/year	24,480 €/year
	Sulger	6.5 €/hour	44,948 €/year
Thermal Generator	Man	5.5 €/hour	36,636 €/year
	Rental	5.5 €/hour	5,478 €/year
Fuel Cell	PEM	1.02 €/hour	4,418 €/year
Electrolyser + Hydrogen Compressor	Alkaline + Metal Hydride	50,000 €/year	50,000 €/year
Hydrogen storage tank	Compressed gas	4,000 €/year	4,000 €/year
	Diesel	0.68 €/L	105,336 €/year
Fuel	Heavy oil	0.34 €/L	1,038,654 €/year
Emissions	CO_2	21 €/t	206,677 €/year
Total			2,006,147 €/year

operational costs of the proposed RES & hydrogen-based power system

Annual electricity consumption and revenues for the 1st year of the RES & Hydrogen-based power system

Environmental and Social Impacts

Milos proposed power system				
Avoided Emission values				
NOx	317,722 kg/year			
SO ₂	328,536 kg/year			
PM ₁₀	2,684 kg/year			
CO ₂	17,120,117 kg/year			
Assumptions				
Mortality value	75,000 €/Life Year Lost			
Abatement cost per tonne of CO ₂	19 €/t			
Summary Results				
Human Health Mortality	629,000 €/year			
Human Health Morbidity	332,000 €/year			
Crops	293,000 €/year			
Materials	44,500 €/year			
CO ₂	325,000 €/year			
Total External Benefit	1,623,500 €/year			
PV of total external benefit	18,621,417 €			

Avoided emissions due to the proposed RES & Hydrogen power system in Milos island

Sensitivity analysis

Parameter	Min.	Original	Max.
Wind turbine capital cost	1000 €/kW	1200 €/kW	1500 €/kW
Fuel Cell capital cost	2000 €/kW	3000 €/kW	3000 €/kW
Electrolyser + Compressor capital cost	1500 €/kW	2000 €/kW	2000 €/kW
Diesel price	-20%	0.68 €/L	+30%
Heavy oil price	-20%	0.34 €/L	+30%
CO ₂ emission trading allowance	-30%	21 €/t	+5%
Fuel cell electricity price	-20%	0.15 €/kWh	+20%

Impact of heavy oil price on Payback Period

Impact of wind turbine capital cost on cost of energy

- Very good commercialization potential for MH2C
- Both major target markets identified (i.e. Large scale Hydrogen Production using excess energy from RES and H2 vehicle refueling stations), show a rapid development.
- The cost of hydrogen compressors does not have a significant impact on the technoeconomic analysis of large-scale RES – Hydrogen power systems
- A cost reduction in the order of 15-20% to the currently existing cost of the thermal compressor would play a significant role in the commercialization of the product in small scale applications, such autonomous, self sufficient residences

The partial support by the ATLAS-MHC Marie Curie project (PIAP-GA-612292) is greatly acknowledged <u>http://www2.ipta.demokritos.gr/atlas-mhc/</u>

DIADIKASIA S

SEVENTH FRAMEWO

MARIE CURIE

atlas MHC