

Towards in silico trials of therapeutic nanoparticles

Panagiotis Neofytou

Thermal Hydraulics & Multiphase Flow Laboratory National Center for Scientific Research 'Demokritos'

Overview

- 1. Introduction to Computational Fluid Dynamics
- 2. Medical Imaging Data Processing
 - i. Grid Generation
- 3. Application 1: Abdominal Aortic Aneurysm
 - i. Flow-particle field
 - ii. Gravity effects on particle deposition
- 4. Application 2: Iliac Bifurcation
 - i. Flow-particle field
 - ii. Deposition aspects
- 5. Ongoing research

Introduction to Computational Fluid Dynamics

Medical imaging data processing

Medical imaging data visualization

Clinical data from medical imaging devices (MRI, CT etc)

Geometry segmentation

- User intervention
- Luminescence thresholds

Geometry reconstruction

- Medical imaging commercial software
- Results in a low quality triangulated surface (STL file) representing the Volume of interest (VOI)

Grid Generation

- By the use of the invariant barycentric coordinates calculated on the planar grid the structured surface grid is created.
- Unification of the surface grids according to a selected topology.
- Initial volume grid creation → Grid enhancement methods (Sorenson, Thomas Middelhoff e.t.c.)

- An abdominal aortic aneurysm (AAA) is a common abnormality of the human cardiovascular system.
- Particle diffusion assessment by patient specific engineering simulations.
- Multi-block structured AAA computational domain with element clustering near the wall.

Wall displacement

Flow field

Nanoparticle wall-concentration with gravity

National Centre for Scientific Research 'Demokritos'

Nanoparticle wall-concentration without gravity

National Centre for Scientific Research 'Demokritos'

Comparison between cases

- Biomechanical applications include series of branching geometrical shapes.
- Great number of branching geometries inside the human body → Modeling of the branching geometry is an important task.
- Multi-block structured bifurcation computational domain with a one block per branch topology.

• Handy implemented technique for the grid preparation for one-to-one union of the two branches

- One block per branch topology
 - + Topologically simple
 - + Able to adapt to multiple branching geometries (Aortic Arch, etc)
 - Presence of a few skewed elements at block corners

Particle concentration

Particle convective velocity

Vascular Deposition Parameter

Deposition Flux

Particles adhered on the IB at the end of the simulations (when the IB is empty).

Ongoing Work

• Vessel-wall infiltration and diffusion

Cell-uptake of nanoparticle and drug release

Acknowledgements:

Dr Marika Pilou

Mr Tasos Skiadopoulos

Mr Giannis Vasilopoulos

Dr Nikos Avgerinos

Dr Vaggelis Makris

Grid Generation

STL file or surface triangulation in 3D.

Planar triangulation in a predefined 2D domain.

Grid Generation

- Structured grid projection on the planar triangulation.
- Each structured grid vertex is located inside a triangle of the planar triangulation.
- The barycentric coordinates for each structured grid vertex are calculated.

