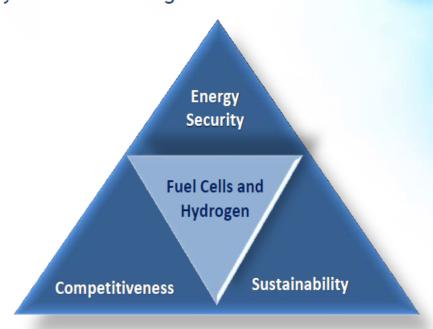
Fuel Cells & Hydrogen Technologies Potential Large Implementation Projects in Greece

Fuel Cells & Hydrogen technologies role in the Energy Union

Energy Security


Increase independence from unstable outside regions

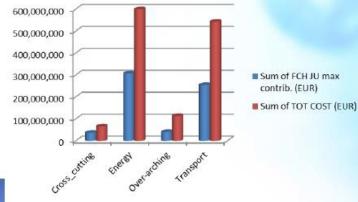
Competitiveness

research excellence leading to industry innovation and growth

Sustainability

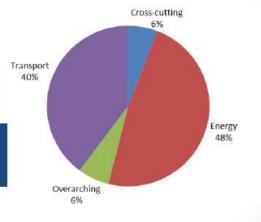
- H₂ is a <u>clean</u> energy carrier
- Transport and Energy applications, generate electricity and heat with very <u>high efficiency</u>
- Possibility for storage of renewable energy sources
- Reduction of CO₂ emissions

Are Fuel Cell & Hydrogen Technologies a REALITY for EUROPE today?


Which could be Potential Large Implementation Projects in Greece?

FCH2 JU portfolio of projects

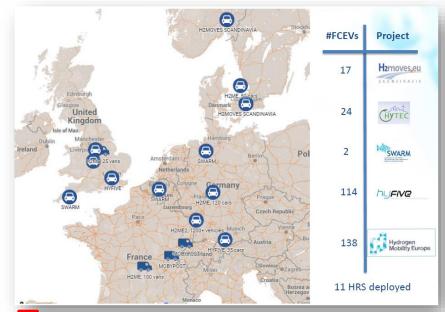
185 projects supported for about 638 mill €


50/50 distribution between Energy and Transport pillars

Similar leverage of private funding: 682 mill €

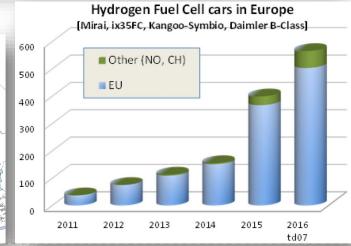
Continuous/constant annual support (through annual calls for proposals)

4


Transport portfolio

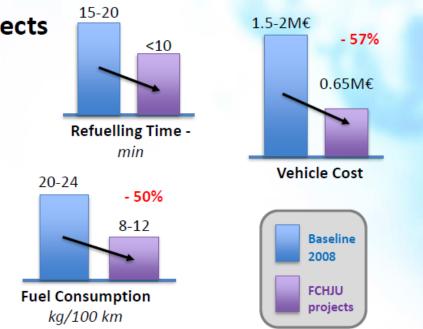
Total FCH JU support:

286.6M€ for 45 projects of which 215.3M€ for demos (incl. 21.8M€ APUs)


Achievements

Buses: Achievements and Challenges

61M€ for 67 buses from 4 projects in 12 locations


Contributions of FCH JU demo projects

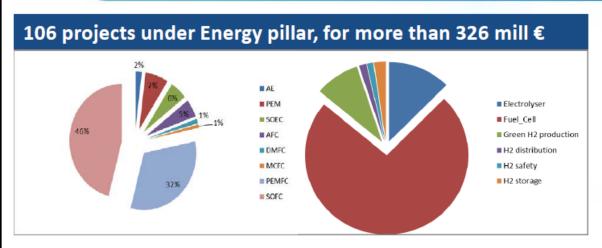
Achievements

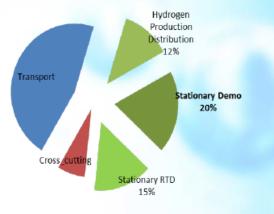
- As flexible as diesel buses
 - Full operations: 12-20hr daily shifts
 - Short refuelling time
- Cost reduction
- Efficient electric drivetrain

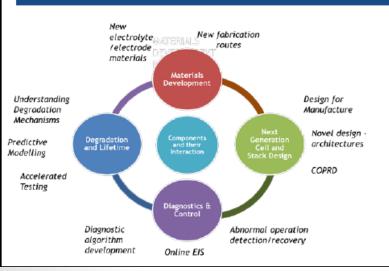
Challenges

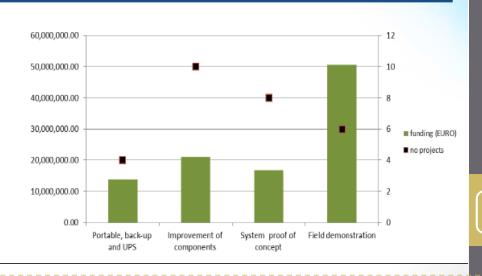
- Availability
- Spare parts
- Time to repair
- Trained staff
- Cost of FCBs, Infrastructure/H2

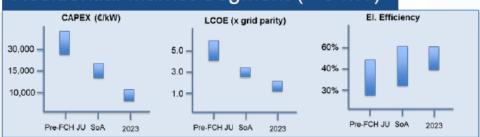
Volumes bring lower costs and mature supply chain


Buses: from demo to a 1.5 B€ market appetite

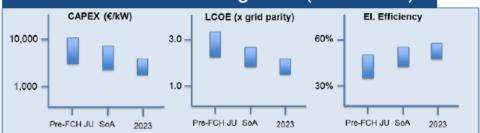

A broad stakeholder coalition of 82 organisations established within studies - Operators and local governments have grown now to 64 locations


Secured commitments for roll-out and large scale demos


ENERGY portfolio


<u>Technology neutral</u> approach, however most support to Solide Oxide and PEM for both fuel cells and electrolyser applications

Accomplishments (examples of projects achievements)


Residential Market Segment (< 5 kW)

ene.field project: more than 500 units installed in 10 countries of Europe, reliabilities confirmed, very good customer satisfaction (70% positive feedback),

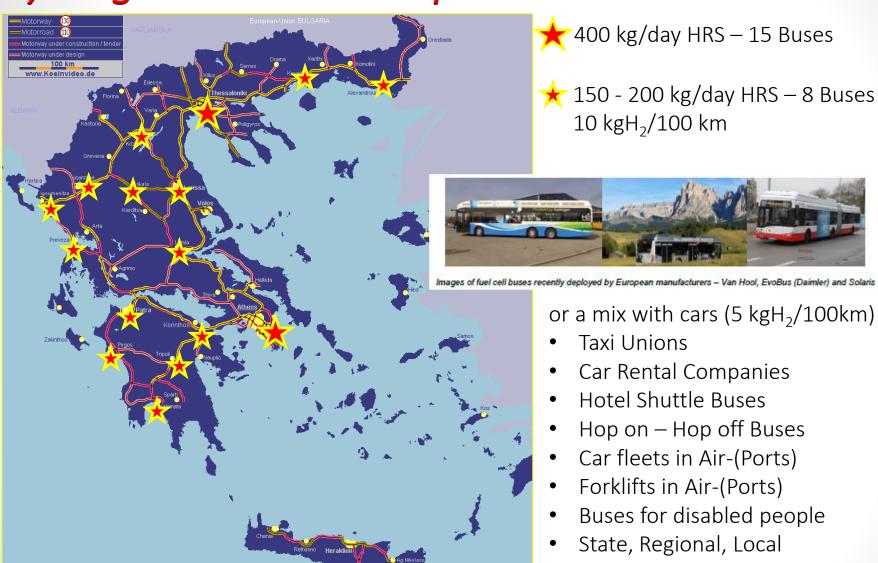
SOFT-PACT project: 65 fuel cell systems, electrical efficiency higher than 42 % over lifetime (total efficency higher than 78%), 25% cost reduction

Commercial Market Segment (5-400 kW)

SOFCOM project: proof-of-concept poly-generation SOFC systems fed by biogenous primary fuels (biogas and bio-syngas, locally produced), modular concept, cost driver identified → next step: upscaling to hundreds kW size (DEMOSOFC project)

POWER-UP project: first module of 40kW (out of 240 kW) in the field, 61% electrical efficiency

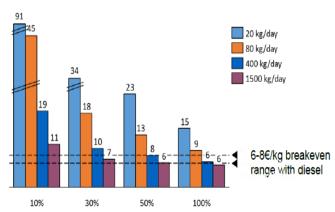
ClearGenDemo project: 1 MW PEM to be installed near Bordeaux, FR on by-product H2 from clorialkali plant

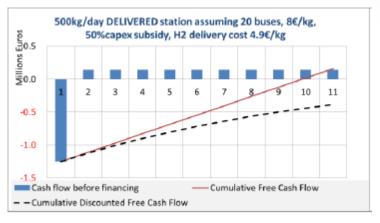

DEMCOPEM-2MW project: 2 MW PEM (European technology) to be demonstrated in China

Industrial Market Segment (0.3-XX MW)

Potential Implementation Projects in Greece

Hydrogen - Road Transport

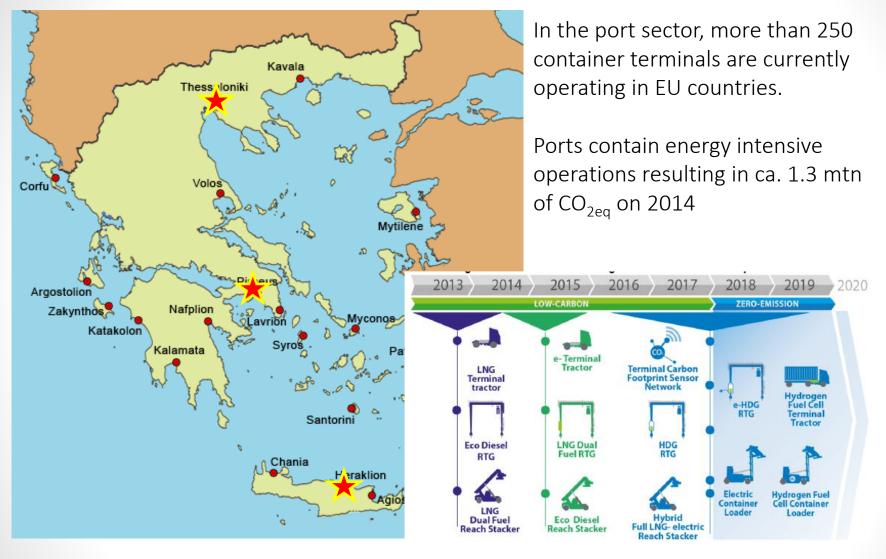



11

authorities cars, scooters

Hydrogen - Road Transport

Large stations are needed to create plausible investment case



Calculation of the breakeven price for hydrogen at stations of different sizes and load factors (fraction of capacity used per

Task	Capacity of station	Source of hydrogen	Location	Total Cost €	CEF funding €	Other funding
1.1 Installation in Bruneck	400 kg/day	On-site electrolysis using green electricity	Bruneck	6.86 Mio	3.43 Mio	Mio from regional/local budgets 1.6 Mio from applicant's own
1.2 Installation in Cologne	500 kg/day	By-product from nearby chemical plant	Cologne	3.07 Mio	1.53 Mio	resources 1.53 Mio from applicants own resources
1.3 Installation in Hürth	300 kg/day	By-product from nearby chemical plant	Hürth	0.85 Mio	0.43 Mio	0.43 Mio from applicants own resources
1.4 Installation in Wuppertal	320 kg/day	On-site electrolysis using green electricity	Wuppertal	5.04 Mio	2.52 Mio	2.52 Mio from applicants own resources
1.5 Installation in South Rotterdam	480 kg/day	On-site electrolysis using green electricity	South Rotterdam	5.00 Mio	2.5 Mio	2.0 Mio from applicants own resources 0.5 Mio from revenue generated
1.6 Installation in Birmingham	680 kg/day	On-site electrolysis using green electricity	Birmingham	4.83 Mio	2.42 Mio	1.34 Mio national funding 1.07 Mio other funding
1.7 Installation in London	400 kg/day	Delivered liquid	London	4.5 Mio	2.25 Mio	Mio National funding 1.25 Mio applicants own resources
1.8 Installation in Groningen	200 kg/day	By-product from nearby chemical plant	Groningen	2.0 Mio	1.0 Mio	0.25 Mio applicants own resources 0.75 Mio regional/local funding

12

Hydrogen - Ports Operation

Hydrogen - Ports Operation

Figure 5. HDG (Hybrid-Diesel) and e-HDG (Electric Pluggable Equipped with Super-Caps) Prototypes

Low Voltage

Electrified RTG e-HDG

Source: Paceco Spain

Figure 8. Hydrogen Fuel Cell Yard Terminal Tractor Prototype

THYSTER-YALE

Figure 7. Hyster-Yale Container Top Loader

Hyster-Yale is a Full-Line Lift Truck Supplier... CLASS 1 CLASS 2 CLASS 3 CLASS 4 CLASS 5 Electric **Electric Narrow Electric Hand** Counterbalanced Combustion Engine Combustion Engine Aisle Trucks Rider Trucks (cushion tire) (pneumatic tire) 1.0T to 7.0T Over 260 different truck models available

Figure 6. Lift Truck Classification according to Lifting Capacity

Source: Hyster - Yale

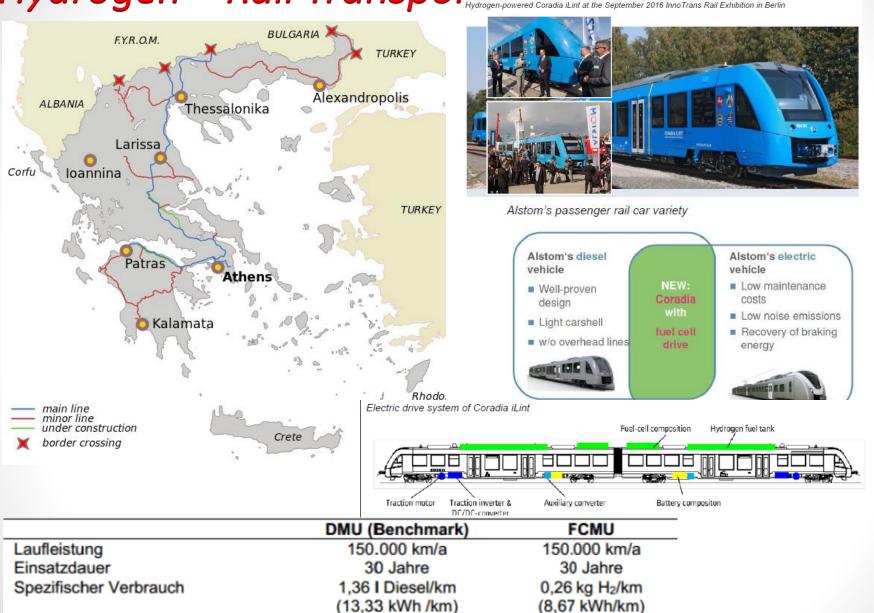
Source: Hyster-Yale

14

Solutions to DRIVE Productivity

Hydrogen - Ports Operation

Base Line Scenario (2016) vs. Eco-Efficient Conservative and Optimistic Scenarios


	Energy Consumption		CO2e Emissions (tonnes)			
	Energy Consumer	Base Scenario 2016	Base Scenario 2016	2020 Scenario	2025 Scenario	
	STS Cranes	8.556.723	2.567	2.439	924	
	Reefer Containers	9.567.227	2.870	2.727	1.033	
Electrical Consumption (kWh/year)	Yard Lightning	3.150.345	945	898	340	
	Offices	1.005.346	302	287	109	
	Sub-Total (kWh)	22.279.641	6.684	6.351	2.406	
	RTG Cranes	2.970.000	9.177	4.648	2.753	
	Yard Tractors	1.750.000	5.408	4.110	1.947	
Fuel Consumption (litres/year)	Cont. Handlers	560.000	1.730	1.150	156	
	Other Vehicles	70.000	216	164	156	
	Sub-Total (litres)	5.350.000	16.531	10.072	5.012	
		Total CO2e (tonnes)	23.215	16.423	7.418	

Source: Fundación Valenciaport

The current study shows CO_{2e} reduction of 29.2% in the conservative scenario and 51.6% considering the optimistic scenario in comparison with the 2016 baseline. These results confirm the potential benefits derived from the BEST Ports prototypes implementation. Given that more than 1.3 million CO_{2e} tonnes are generated at European port terminals (see Section 2.1), by extending these hypotheses at European level, a potential reduction between 400,000 and 650,000 CO_{2e} tonnes could take place in European ports yearly. This potential reduction surpasses even in the conservative scenario Europe's 20/20/20 Objectives.

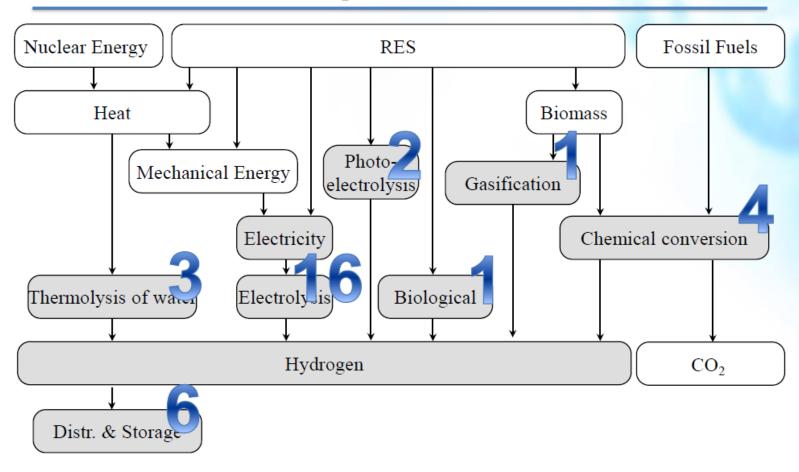
Hydrogen — Rail Transport

Hydrogen-powered Coradia iLint at the September 2016 InnoTrans Rail Exhibition in Berlin

5th Hellenic Forum for SCIENCE TECHNOLOGY AND INNOVATION

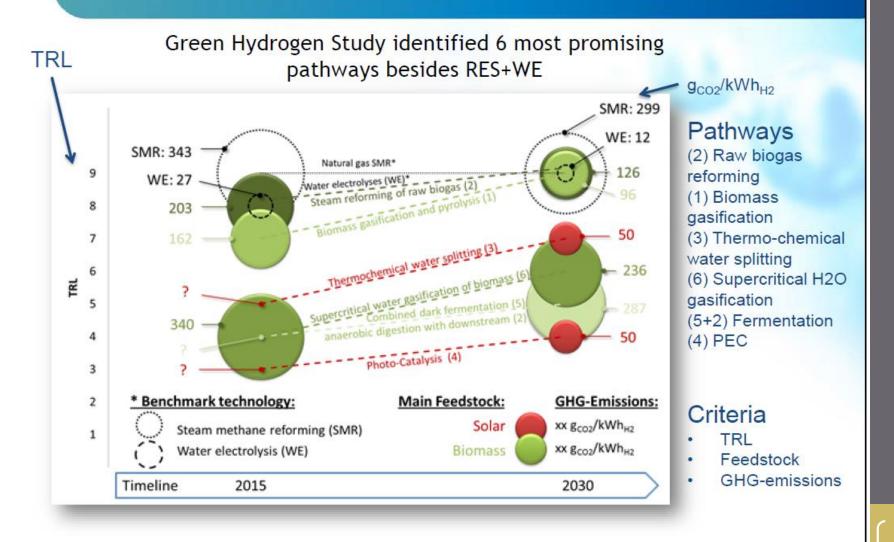
July 5th 2017, Athens

FCH CHP Possible Applications in Greece


- CHP in stand alone applications (islands) and isolated operations (e.g. power supply in telecommunication antennas)
- FCH CHP integration with Biogas or Bio-methane production ... or in general biomass potential
- Small-medium FCH CHP for residential/commercial applications
- Hydrogen production and use for efficient energy storage
 - RES penetration in off-grid applications (e.g., islands)
 - Use of excess power in current PPC power plants

Requirements for the deployment of FCH projects

- Political commitment and strategy (Road Map) for FCH deployments
- Funding (European grants, EIB loans, Governmental/Regional funding, PPPs ...)
- Maturity (Permits, Selection of location, National laws in place, AFI)
- Training of engineers/technicians
- Standards/Specifications (already developed in several countries)
- Social awareness/acceptance (studies, monitoring, training of public)
 - Coordination of efforts to deliver the first studies/roadmaps/education material and to "pull" public-private interest for investments and "push" the roll out of FCH products.
 - *Hellenic Hydrogen Association* with University/Research and Industry (HELPE, Air Liquide, ELBIO, etc) Pillars. Expected to be established on early 2018.


H₂ Production – Present Technical Coverage

95% of FCH JU support on H₂ production goes to renewable pathways

19

H₂ Production – Strategy

P2H & H2X - from 150kW to 6MW

Industry acknowledges the potential of Hydrogen to the greening of industrial products through increased penetration of renewables

Transport, Steel industry, Refineries, Chemical industry

21