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Introduction

« Concentrating Solar Systems

« Solar Thermal Power Plants (STPPs):
from receivers to receivers/reactors.

« Solar fuels synthesis chemistries.

 Solar fuels technologies pursued at

DLR, current developments and state-
of-the-art.

« R&D needs and outlook.

i DLR
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Solar Thermal Power Plants
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Temperature Levels of CSP Technologies
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Solar receivers- From solar electricity to solar chemicals

* In direct analogy with “conventional” _J> -
catalytic applications, solar receivers \ =

can employ proper functional /E\_\ﬁ Y e
materials capable of performing/ I I
catalyzing a variety of high- — e
temperature chemical reactions and AU L
thus be “transformed” to solar

receiver/reactors where (endothermic)

chemical reactions can take place. i —

'Hotﬂuld

« In this way absorbed radiation is e L

& ‘e S5 220207 Hot A

converted from thermal to chemical Slem ) = .
form, storing solar energy in the Y L e
chemical bonds of the reaction e T4 ot
products (e.g. Hydrogen) rather than K

as thermal energy in a working fluid.

i DLR
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Partial listing of various feedstocks and solar energy
variances for solar liquid hydrocarbon fuels production

Fuel: any chemical compound that stores energy, which can be released by being
oxidised to provide heat.

“Solar fuel”. any chemical compound that can react with oxygen to release
energy, and was initially formed, at least partly, using energy from solar radiation.

Feedstocks

A%

Natural Gas (CH,)
Biogas (CH,, CO,)

Biomass (CH, + CO,)
Zero-Energy Chemicals

(H,O COy)

. 5

Solar (Plant) Energy Choices

-
—

/

Thermochemical

Photochemical/
Photobiological

|

T~

Electrochemical

Solar Heat Direct use of solar Solar Electricity:
CSP photon energy CSP or PV
Reforming I{:ZI
Gasification Electrolysis
Splitting Cycles (H,0,CO,)

i DLR

Solar Fuels

N

Hydrogen (H,)
Synthetic Fuels (C,H,,.2)
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Strategy and Approach on Solar Fuels in Germany

Goal in the Helmholtz Association

To demonstrate stand-alone, viable systems for the emission-free
production of chemical fuels — especially Hydrogen - with sunlight

i DLR
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CSP-aided routes for the production of “solar syngas”

Carbonaceous feedstocks

Gaseous i - + Solid
feedstocks Sl Enorgy feedstocks
Natural Biogas (H,O, Pet Coke Biomass
gas (CH4) (CH4, COZ) COZ) (C) CxHyOz
Reforming Splitting Gasification
(steam,CO;)) | @ —T7——| T

H, + CO
Solar syngas from carbonaceous feedstocks

Solar (liquid) fuels from carbonaceous feedstocks

i DLR
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Solar (Fuels) Chemistry

Solar Steam/dry methane « CH,+H,0+(AH) 2 3 H,+ CO o
Reforming (SMR/DMR) - CH,+CO, +(AH) 2 2 H,+2CO (~ 850-950°C)

Solar Gasification

~1000-1200°
C,H,0,S,N, + (1-y) H,0 + (AH) — (x/2+1-y-u)H, + CO + u H,S + v/2 N, (~ 1000-1200°C)

Solar Redox processes / Thermochemical (water splitting) cycles
“Net” reactions: H,0 + (AH) » H,+ % 0,

Sulfur-based H,SO,— SO; + H,0 (~400°C)
SO; + (AH) < SO, + %2 0, (~ 850-950°C)
SO, + 2H,0 - H,S0, + H, (80-120°C, electrolysis)

Redox-oxides based MeO

i DLR

oxidized + (AH) — Meoreduced + % 02 (N 1100'14500(:)
Meoreduced + HZO (g) — Meooxidized + H2 + (AH) (N 700°C)
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Steam and CO,-Reforming of Natural Gas Reactions

Steam Reforming:

(1) CH, + H,0-> 3H, + CO Ah = 206 kJ/mol
(2) (WGS) CO + H,0 > H,+ CO, Ah =-41 kJ/mol
(3) = (1+2) CH, + H,0 > 4H, + CO, Ah = 165 kJ/mol

Dry (CO,) Reforming:
(1) CO,+ CH,~»> 2H,+ 2C0O Ah =247 kJ/mol

* Reforming Product is Syngas — Mixture of H, and CO

» Highly endothermic - Favoured by high temperatures; > 700 °C in
industrial processes

* Increase in number of moles - Favoured by low pressures

» Reforming of mixtures of CO,/H,0 is possible

« Use of syngas for methanol production: e.g. 2H, + CO —» CH,COH
» Both technologies can be driven by solar energy
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(Water-splitting) Redox-oxide-based Thermochemical Cycles

« Series of chemical reactions with net result being H, & O, production from H,O

« Why a series of reactions ? The indirect H,O splitting is necessary since
thermolysis is feasible at impractical temperature ranges (>2200°C).

1st Step: Thermal reduction (Regeneration) MO,, + AH-> MO, 4+ 720,

HO+ 2e=>H, +0"

leLEC TROLYTE l“"

2nd Step: H,O /CO, Splitting WS /CDS

H,O + MO, 4 = MO, + H, +(AH)
CO, + MO, 4 2 MO, + CO +(AH)

Net reaction: H,O - H, + 2 O,
Net reaction: CO, > CO +'20,

Net effect: Solar Q >Solar Fuels SOEC

i DLR
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Principle of the solar thermal fuel production
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Solar Methane Reforming— Reformer (heating) Technologies

a) decoupled/allothermal b) indirect (tube reactor) C) Integrated, direct,
volumetric
product
product air gas catalytically-active
gas | | T absorber
- : all 3 =
3 4
o .
3| p< ) product ,
e Ao gas .
feed feed Q]R/’Ij“F
gas gas feed
gas
Source: DLR
* Reformer heated externally (700 Irradiated reformer tubes (up to Catalytic active direct irradiated
to 850°C) 850°C), temperature gradient absorber
e Optional heat storage Approx. 70 % Reformer-h Approx. 90 % Reformer-h
(up to 24/7) Development: Australia, Japan; High solar flux, works only by
e E.g. ASTERIX project Research in Germany and Israel direct solar radiation

DLR coordinated projects:
SOLASYS, SOLREF; Research in
Israel, Japan

i DLR
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Solar receiver/reactor types (particles vs. porous solids;
moving vs. non-moving parts)
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Reforming vs. W/CD redox-oxides-“splitting” Chemistry

« Employs fossil fuel (CH,) as reactant. * Employs CO, as a reactant; i.e. can

- Solid catalyst: Ni-based catalysts “reuse/valorize” atmospheric CO,.
supported on CaAl,0,, or MgALO,; * Solid redox—pair materials: ferrites
noble metals (Ru, Rh, Pd, Pt); Fe, Co. (NiFe,O0,, CoFe,0,), CeO,-ZrO,,

perovskites (La, ,Sr,Mn,Al; O, ;).

- Temperature range: 700-850°C. * Temperature range: 750-1500°C.

« Gaseous reactants can be fed * Solid is not a “catalyst” but a reactant,
continuously. with non-negligible mass to be heated

to the reaction temperature and
progressively depleted during reaction,
having to be replenished (reactions
cannot be carried out continuously).

Reforming vs. W/CD “splitting” solar reactors

« “Structured” reactors. « Structured & non-structured (particle)

« Solar heating: direct or indirect. reactors.
« Solar heating: only direct (required Ts
too high for indirect heating).
# T R i :
DLR e
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Criteria for the selection of processes of solar thermal
hydrogen production

« Operation temperature has to be feasible and practicable
Optimum Temperature is between 800 and 1600 K.

Fast reactions are desirable.

High availability of raw materials.

High efficiency must be realisable.

H, production costs must be acceptable.
Reference: H, from electrolysis by ,solar electricity”

i DLR
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Solar Hydrogen supply : Power to Gas/Liquid Technologies

Current such “benchmark” technology: solar-aided electrolysis with electricity
supplied from PV or CSP sources.

Power-to-Gas (PtG): Production of a
high-energy density gas via the
electrolysis of water. First intermediate |
product is hydrogen; may be converted
to methane via methanation requiring
CO, feed-in. ~
*Power-to-Liquids (PtL): Production of
liquid carbon-based energy carriers from
electricity via the electrolysis of water. | — """”‘"1 |'"’°’°"°H §
Hydrogen is the intermediate product;is | . [—— R
further converted to synthesis gas by Electrolyzer Hm Fuel Cell "
adding CO, and to synthetic gasoline,

Diesel or kerosene.

i DLR

Hydrogen Cycle
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Summary and Outlook:

« CSP-aided large scale production of solar fuels will require the economies of
scale offered by heliostat fields with central tower receivers.

« CSP systems as electricity providers, can supply - alternatively to photovoltaics/
PVs - the renewable electricity for electrolysis of steam or steam/CO,
mixtures towards hydrogen/syngas production.

« CSP can be employed as the only energy source for the renewable
thermochemical production of hydrogen and/or syngas from water/carbon
dioxide via solar redox processes. Such a route has in principle the potential
to culminate essentially to the synthesis of liquid hydrocarbon fuels using
only renewable/recyclable resources: solar energy, water and
captured/recycled CO,. However, further research efforts are needed for the
achievement of these targets in practice.

« Thus, at least for a transition period, CSP-aided reforming of methane-
containing gaseous feedstocks with natural gas (NG) being the first choice,
can offer a viable route for fossil fuel decarbonization and create a transition
path towards a “solar hydrogen- solar fuels” economy.

* (Co-)Electrolysis shares common features with solar redox processes: both
involve the composition optimization and the development of bulk, porous oxide

‘g;ructures that perform cycllc redox operations for extended perlods of tlme
DLR
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Extra slides

DLR
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From “Reforming” ~ to“Solar Reforming”
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Directly heated volumetric receiver/reformers:
SOLASYS, SOLREF

Secondary Concentrator Reformer SOI
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Directly heated volumetric receiver/reformers:
SOLASYS, SOLREF

 Pressurised solar receiver,
* Developed by DLR

* Tested at the Weizmann
Institute of Science, Israel

* Power coupled into the process
gas: 220 kW, and 400 kW,

« Reforming temperature:
between 765°C and 1000°C

e Pressure: SOLASYS 9 bar,
SOLREF 15 bar

e Methane Conversion:
max. 78 % (= theor. balance)

i DLR
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HYDROSOL Technology: Continuous (dual chamber)
Solar Receiver/ Reactor scalability and evolution

2017: 750 kW,,, Almeria, (Schack
et al. Solar Energy, 2016,17).

1 2008: 100 kW, PSA, Almeria, (Roeb
et al, Solar Energy, 2011).

2004: 3 kW, DLR,
Cologne, (Roeb et
al, WHEC, 2006).

2002: 0.5 kW, DLR,
] Cologne, (Agrafiotis et al,
Solar Energy, 2005). T "
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CSP-electrolysis

Flow diagram of the coupling of the solar power tower
with the electrolyser
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Potential of Solar Energy
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Potential of Solar Energy
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Types of Concentrating Solar Thermal Technologies
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(Solar) Chemical Looping Reforming (“Open” TCs)

CH4 + I\/Ieooxidized + (AH) - CO+ H2 + I\/Ieoreduced (1)
H,O/CO,/(N,+0,) + MeO, .y ceq 2> H/COI(N,+less O,) + MeO,,.y..q+ (AH) ...(2)
CH, + H,0/CO,/(N,+0,) > H,/CO/(N,+less O,) + CO + H, ...(3)

i DLR




